yuchenglu commited on
Commit
6fd5a28
·
1 Parent(s): a3e7bfc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -20
README.md CHANGED
@@ -7,52 +7,63 @@ datasets:
7
  - togethercomputer/llama-instruct
8
  ---
9
 
10
- # LLaMA-2-7B-32K-Instruct
11
 
12
  ## Model Description
13
 
14
- LLaMA-2-7B-32K-Instruct is an open-source, long-context chat model finetuned from [LLaMA-2-7B-32K](https://huggingface.co/togethercomputer/LLaMA-2-7B-32K), over high-quality instruction and chat data.
15
- We built LLaMA-2-7B-32K-Instruct with less than 200 lines of Python script using [Together API](https://together.ai/blog/api-announcement), and we also make the [recipe fully available](https://github.com/togethercomputer/LLaMA-2-32K-Instruct).
16
- We hope that this can enable everyone to finetune their own version of [LLaMA-2-7B-32K](https://huggingface.co/togethercomputer/LLaMA-2-7B-32K) — play with [Together API](https://together.ai/blog/api-announcement) and give us feedback!
17
 
18
  ## Data Collection Details
19
 
20
- LLaMA-2-7B-32K-Instruct is fine-tuned over a combination of two parts:
21
  1. **19K single- and multi-round conversations generated by human instructions and [Llama-2-70B-Chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) outputs**.
22
  We collected the dataset following the distillation paradigm that is used by Alpaca, Vicuna, WizardLM, Orca — producing instructions by querying a powerful LLM (in this case, [Llama-2-70B-Chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)).
23
  The complete dataset is also released [here](https://huggingface.co/datasets/togethercomputer/llama-instruct).
24
  We also share the complete recipe for the data collection process [here](https://github.com/togethercomputer/LLaMA-2-32K-Chat).
25
 
26
  2. **Long-context Summarization and Long-context QA**.
27
- We follow the recipe of [LLaMA-2-7B-32K](https://together.ai/blog/llama-2-7b-32k), and train our model with the [BookSum dataset](https://huggingface.co/datasets/togethercomputer/Long-Data-Collections) and [Multi-document Question Answering](https://arxiv.org/abs/2307.03172).
28
 
29
  The final data mixture used for model finetuning is: 19K instruction (50%) + BookSum (25%) + MQA (25%).
30
 
31
  ## Model Usage
32
 
33
  We encourage you to try out this model using the [Together API](https://together.ai/blog/api-announcement). The updated inference stack allows for efficient inference.
34
- Alternatively, you can load the model directly from the Hugging Face model hub using
 
 
 
 
 
 
 
 
 
 
 
35
 
36
  ```python
37
  from transformers import AutoTokenizer, AutoModelForCausalLM
38
 
39
- tokenizer = AutoTokenizer.from_pretrained("togethercomputer/LLaMA-2-7B-32K-Instruct")
40
- model = AutoModelForCausalLM.from_pretrained("togethercomputer/LLaMA-2-7B-32K-Instruct", trust_remote_code=True, torch_dtype=torch.float16)
41
  input_ids = tokenizer.encode(<your instruction>, return_tensors="pt")
42
- output = model.generate(input_ids, max_length=..., temperature=...)
43
  output_text = tokenizer.decode(output[0], skip_special_tokens=True)
44
  ```
45
 
46
  The model is also hosted on [Together Playground](https://api.together.xyz/playground). You can simply play with the model by using prompt formatted by:
47
 
48
  ```
49
- [INST] <your instruction here> [\INST].
50
  ```
51
 
52
  For example, if we query the model with
53
 
54
  ```
55
- [INST] Write a poem about cats [\INST],
56
  ```
57
 
58
  the model will return
@@ -82,33 +93,33 @@ Their charm, a gift, that's forever told.
82
 
83
  ## Model Evaluation
84
 
85
- We evaluate the model from three aspects: 1) [Normalized perplexity](https://together.ai/blog/llama-2-7b-32k) over [PG19 dataset](https://huggingface.co/datasets/pg19);
86
- 2) [Rouge score over BookSum](https://together.ai/blog/llama-2-7b-32k); and
87
- 3) [Accuracy over Multi-document Question Answering (MQA)](https://together.ai/blog/llama-2-7b-32k). We summarize the results below:
88
 
89
  * Normalized Perplexity over PG19
90
  | Model | 2K Seq | 4K Seq | 8K Seq | 16K Seq | 32K Seq |
91
  | -------- | ------- | ------- | ------- | ------- | ------- |
92
  | LLaMA-2-7B-Chat (Meta) | 1.844 | 1.833 | N/A | N/A | N/A |
93
- | LLaMA-2-7B-32K-Instruct (ours) | 1.813 | 1.798 | 1.781 | 1.778 | 1.772|
94
 
95
  * Rouge Score over BookSum
96
  | Model | R1 | R2 | RL |
97
  | -------- | ------- | ------- | ------- |
98
  | LLaMA-2-7B-Chat (Meta) | 0.055 | 0.008 | 0.046 |
99
- | LLaMA-2-7B-32K-Instruct (ours) | 0.365 | 0.086 | 0.192 |
100
 
101
  * Accuracy over MQA
102
  | Model | 20 docs (Avg 2.9K tokens) | 30 docs (Avg 4.4K tokens) | 50 docs (Avg 7.4K tokens) |
103
  | -------- | ------- | ------- | ------- |
104
  | LLaMA-2-7B-Chat (Meta) | 0.384 | 0.375 | 0.313 |
105
- | LLaMA-2-7B-32K-Instruct (ours) | 0.451 | 0.434 | 0.373 |
106
 
107
- We observe that LLaMA-2-7B-32K-Instruct obtains reasonable (and even better) perplexity, rouge score and accuracy over the original LLaMA-2-7B-Chat model.
108
 
109
  ## Limitations and Bias
110
 
111
- As with all language models, LLaMA-2-7B-32K-Instruct may generate incorrect or biased content. It's important to keep this in mind when using the model.
112
 
113
  ## Community
114
 
 
7
  - togethercomputer/llama-instruct
8
  ---
9
 
10
+ # Llama-2-7B-32K-Instruct
11
 
12
  ## Model Description
13
 
14
+ Llama-2-7B-32K-Instruct is an open-source, long-context chat model finetuned from [Llama-2-7B-32K](https://huggingface.co/togethercomputer/Llama-2-7B-32K), over high-quality instruction and chat data.
15
+ We built Llama-2-7B-32K-Instruct with less than 200 lines of Python script using [Together API](https://together.ai/blog/api-announcement), and we also make the [recipe fully available](https://github.com/togethercomputer/LLaMA-2-32K-Instruct).
16
+ We hope that this can enable everyone to finetune their own version of [Llama-2-7B-32K](https://huggingface.co/togethercomputer/Llama-2-7B-32K) — play with [Together API](https://together.ai/blog/api-announcement) and give us feedback!
17
 
18
  ## Data Collection Details
19
 
20
+ Llama-2-7B-32K-Instruct is fine-tuned over a combination of two parts:
21
  1. **19K single- and multi-round conversations generated by human instructions and [Llama-2-70B-Chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) outputs**.
22
  We collected the dataset following the distillation paradigm that is used by Alpaca, Vicuna, WizardLM, Orca — producing instructions by querying a powerful LLM (in this case, [Llama-2-70B-Chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)).
23
  The complete dataset is also released [here](https://huggingface.co/datasets/togethercomputer/llama-instruct).
24
  We also share the complete recipe for the data collection process [here](https://github.com/togethercomputer/LLaMA-2-32K-Chat).
25
 
26
  2. **Long-context Summarization and Long-context QA**.
27
+ We follow the recipe of [Llama-2-7B-32K](https://together.ai/blog/Llama-2-7B-32K), and train our model with the [BookSum dataset](https://huggingface.co/datasets/togethercomputer/Long-Data-Collections) and [Multi-document Question Answering](https://arxiv.org/abs/2307.03172).
28
 
29
  The final data mixture used for model finetuning is: 19K instruction (50%) + BookSum (25%) + MQA (25%).
30
 
31
  ## Model Usage
32
 
33
  We encourage you to try out this model using the [Together API](https://together.ai/blog/api-announcement). The updated inference stack allows for efficient inference.
34
+
35
+ To run the model locally, we strongly recommend to install Flash Attention V2, which is necessary to obtain the best performance:
36
+ ```
37
+ # Please update the path of `CUDA_HOME`
38
+ export CUDA_HOME=/usr/local/cuda-11.8
39
+ pip install transformers==4.31.0
40
+ pip install sentencepiece
41
+ pip install ninja
42
+ pip install flash-attn --no-build-isolation
43
+ pip install git+https://github.com/HazyResearch/flash-attention.git#subdirectory=csrc/rotary
44
+ ```
45
+ You can load the model directly from the Hugging Face model hub using
46
 
47
  ```python
48
  from transformers import AutoTokenizer, AutoModelForCausalLM
49
 
50
+ tokenizer = AutoTokenizer.from_pretrained("togethercomputer/Llama-2-7B-32K-Instruct")
51
+ model = AutoModelForCausalLM.from_pretrained("togethercomputer/Llama-2-7B-32K-Instruct", trust_remote_code=True, torch_dtype=torch.float16)
52
  input_ids = tokenizer.encode(<your instruction>, return_tensors="pt")
53
+ output = model.generate(input_ids, max_length=128, temperature=0.7)
54
  output_text = tokenizer.decode(output[0], skip_special_tokens=True)
55
  ```
56
 
57
  The model is also hosted on [Together Playground](https://api.together.xyz/playground). You can simply play with the model by using prompt formatted by:
58
 
59
  ```
60
+ [INST] <your instruction here> [\INST]\n\n
61
  ```
62
 
63
  For example, if we query the model with
64
 
65
  ```
66
+ [INST] Write a poem about cats [\INST]\n\n
67
  ```
68
 
69
  the model will return
 
93
 
94
  ## Model Evaluation
95
 
96
+ We evaluate the model from three aspects: 1) [Normalized perplexity](https://together.ai/blog/Llama-2-7B-32K) over [PG19 dataset](https://huggingface.co/datasets/pg19);
97
+ 2) [Rouge score over BookSum](https://together.ai/blog/Llama-2-7B-32K); and
98
+ 3) [Accuracy over Multi-document Question Answering (MQA)](https://together.ai/blog/Llama-2-7B-32K). We summarize the results below:
99
 
100
  * Normalized Perplexity over PG19
101
  | Model | 2K Seq | 4K Seq | 8K Seq | 16K Seq | 32K Seq |
102
  | -------- | ------- | ------- | ------- | ------- | ------- |
103
  | LLaMA-2-7B-Chat (Meta) | 1.844 | 1.833 | N/A | N/A | N/A |
104
+ | Llama-2-7B-32K-Instruct (ours) | 1.813 | 1.798 | 1.781 | 1.778 | 1.772|
105
 
106
  * Rouge Score over BookSum
107
  | Model | R1 | R2 | RL |
108
  | -------- | ------- | ------- | ------- |
109
  | LLaMA-2-7B-Chat (Meta) | 0.055 | 0.008 | 0.046 |
110
+ | Llama-2-7B-32K-Instruct (ours) | 0.365 | 0.086 | 0.192 |
111
 
112
  * Accuracy over MQA
113
  | Model | 20 docs (Avg 2.9K tokens) | 30 docs (Avg 4.4K tokens) | 50 docs (Avg 7.4K tokens) |
114
  | -------- | ------- | ------- | ------- |
115
  | LLaMA-2-7B-Chat (Meta) | 0.384 | 0.375 | 0.313 |
116
+ | Llama-2-7B-32K-Instruct (ours) | 0.451 | 0.434 | 0.373 |
117
 
118
+ We observe that Llama-2-7B-32K-Instruct obtains reasonable (and even better) perplexity, rouge score and accuracy over the original LLaMA-2-7B-Chat model.
119
 
120
  ## Limitations and Bias
121
 
122
+ As with all language models, Llama-2-7B-32K-Instruct may generate incorrect or biased content. It's important to keep this in mind when using the model.
123
 
124
  ## Community
125