model update
Browse files- README.md +176 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.dev.json +0 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.dev.json +0 -0
- eval/prediction.2021.test.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/roberta-large-tweetner7-2020-2021-continuous
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.6602098466505246
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.6583122556909634
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.6621184088806661
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.6089541397781462
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.6063426866310634
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.6145764579798109
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.791351974632459
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.78903196137043
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.7936856713310975
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.6626406807576174
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.7033799533799534
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.6263622210690192
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.6239587887403221
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.6646899818440488
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.5921933163664825
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.7644151565074135
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.8116618075801749
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.7223663725998962
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/roberta-large-tweetner7-2020-2021-continuous
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [tner/roberta-large-tweetner-2020](https://huggingface.co/tner/roberta-large-tweetner-2020) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_2021` split). The model is first fine-tuned on `train_2020`, and then continuously fine-tuned on `train_2021`.
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.6602098466505246
|
94 |
+
- Precision (micro): 0.6583122556909634
|
95 |
+
- Recall (micro): 0.6621184088806661
|
96 |
+
- F1 (macro): 0.6089541397781462
|
97 |
+
- Precision (macro): 0.6063426866310634
|
98 |
+
- Recall (macro): 0.6145764579798109
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.5315217391304348
|
104 |
+
- creative_work: 0.44416243654822335
|
105 |
+
- event: 0.48787728847105394
|
106 |
+
- group: 0.6115476597198496
|
107 |
+
- location: 0.6740692357935989
|
108 |
+
- person: 0.8471820809248555
|
109 |
+
- product: 0.6663185378590079
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.6517159585889167, 0.6692301926939467]
|
114 |
+
- 95%: [0.6493037560449608, 0.6705545707079725]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.6517159585889167, 0.6692301926939467]
|
117 |
+
- 95%: [0.6493037560449608, 0.6705545707079725]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-tweetner7-2020-2021-continuous/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/roberta-large-tweetner7-2020-2021-continuous/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/roberta-large-tweetner7-2020-2021-continuous")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_2021
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: tner/roberta-large-tweetner-2020
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 1e-06
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.3
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-tweetner7-2020-2021-continuous/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"2021.dev": {"micro/f1": 0.6493638676844784, "micro/f1_ci": {}, "micro/recall": 0.638, "micro/precision": 0.661139896373057, "macro/f1": 0.6064563940502387, "macro/f1_ci": {}, "macro/recall": 0.5954284242860318, "macro/precision": 0.6210253991075032, "per_entity_metric": {"corporation": {"f1": 0.5797101449275363, "f1_ci": {}, "precision": 0.5714285714285714, "recall": 0.5882352941176471}, "creative_work": {"f1": 0.4805194805194805, "f1_ci": {}, "precision": 0.4625, "recall": 0.5}, "event": {"f1": 0.4472573839662447, "f1_ci": {}, "precision": 0.5, "recall": 0.40458015267175573}, "group": {"f1": 0.6340326340326341, "f1_ci": {}, "precision": 0.6732673267326733, "recall": 0.5991189427312775}, "location": {"f1": 0.676470588235294, "f1_ci": {}, "precision": 0.71875, "recall": 0.6388888888888888}, "person": {"f1": 0.8197278911564626, "f1_ci": {}, "precision": 0.7901639344262295, "recall": 0.8515901060070671}, "product": {"f1": 0.6074766355140188, "f1_ci": {}, "precision": 0.6310679611650486, "recall": 0.5855855855855856}}}, "2021.test": {"micro/f1": 0.6602098466505246, "micro/f1_ci": {"90": [0.6517159585889167, 0.6692301926939467], "95": [0.6493037560449608, 0.6705545707079725]}, "micro/recall": 0.6621184088806661, "micro/precision": 0.6583122556909634, "macro/f1": 0.6089541397781462, "macro/f1_ci": {"90": [0.5992124192664839, 0.6181423707734851], "95": [0.5972392466243823, 0.6207098127019401]}, "macro/recall": 0.6145764579798109, "macro/precision": 0.6063426866310634, "per_entity_metric": {"corporation": {"f1": 0.5315217391304348, "f1_ci": {"90": [0.5062037953042462, 0.557002893455922], "95": [0.5029997910370321, 0.5630029363336992]}, "precision": 0.5202127659574468, "recall": 0.5433333333333333}, "creative_work": {"f1": 0.44416243654822335, "f1_ci": {"90": [0.4122197188872424, 0.47462918144124866], "95": [0.406035622185493, 0.4795]}, "precision": 0.41420118343195267, "recall": 0.478796169630643}, "event": {"f1": 0.48787728847105394, "f1_ci": {"90": [0.4644448167194252, 0.5105902072328322], "95": [0.45939395779891246, 0.5167725537147063]}, "precision": 0.53470715835141, "recall": 0.44858962693357596}, "group": {"f1": 0.6115476597198496, "f1_ci": {"90": [0.5919094922318341, 0.6339441441403232], "95": [0.5886699796091751, 0.639161660780465]}, "precision": 0.6352022711142654, "recall": 0.5895915678524374}, "location": {"f1": 0.6740692357935989, "f1_ci": {"90": [0.6463384301732925, 0.6996206891806976], "95": [0.6399452184154117, 0.704592239580396]}, "precision": 0.6331288343558282, "recall": 0.7206703910614525}, "person": {"f1": 0.8471820809248555, "f1_ci": {"90": [0.8364545587859473, 0.8578287867782268], "95": [0.8343356681910271, 0.8597832152335898]}, "precision": 0.8303824362606232, "recall": 0.8646755162241888}, "product": {"f1": 0.6663185378590079, "f1_ci": {"90": [0.6430440201857166, 0.6880601156195403], "95": [0.6389027898322917, 0.6912792458554788]}, "precision": 0.6765641569459173, "recall": 0.6563786008230452}}}, "2020.test": {"micro/f1": 0.6626406807576174, "micro/f1_ci": {"90": [0.6421811481777288, 0.6824408527817176], "95": [0.6372901150251117, 0.6854804698319146]}, "micro/recall": 0.6263622210690192, "micro/precision": 0.7033799533799534, "macro/f1": 0.6239587887403221, "macro/f1_ci": {"90": [0.602302727331785, 0.6450629596325671], "95": [0.5970260956556793, 0.6489300269035955]}, "macro/recall": 0.5921933163664825, "macro/precision": 0.6646899818440488, "per_entity_metric": {"corporation": {"f1": 0.5775401069518716, "f1_ci": {"90": [0.5159532401719902, 0.631592039800995], "95": [0.5048681813824177, 0.6443506817426007]}, "precision": 0.5901639344262295, "recall": 0.5654450261780105}, "creative_work": {"f1": 0.5414364640883977, "f1_ci": {"90": [0.48183509569087224, 0.5982905982905983], "95": [0.47114785318559554, 0.6071453442101075]}, "precision": 0.5355191256830601, "recall": 0.547486033519553}, "event": {"f1": 0.4848484848484848, "f1_ci": {"90": [0.430196666372696, 0.5392663954742951], "95": [0.41777510040160637, 0.5480195121951219]}, "precision": 0.5217391304347826, "recall": 0.4528301886792453}, "group": {"f1": 0.5752380952380952, "f1_ci": {"90": [0.5250448836936347, 0.6279727523503913], "95": [0.5077881926419612, 0.6401626025391906]}, "precision": 0.705607476635514, "recall": 0.4855305466237942}, "location": {"f1": 0.676923076923077, "f1_ci": {"90": [0.6140042598509052, 0.7335108890745321], "95": [0.6034973885094416, 0.7419877793680504]}, "precision": 0.6875, "recall": 0.6666666666666666}, "person": {"f1": 0.8333333333333334, "f1_ci": {"90": [0.8072107474406325, 0.8569065343258891], "95": [0.8017923571846364, 0.8613520685620369]}, "precision": 0.8538732394366197, "recall": 0.8137583892617449}, "product": {"f1": 0.6783919597989949, "f1_ci": {"90": [0.6273530339040599, 0.7267773646555122], "95": [0.6158022378645676, 0.7371281899611289]}, "precision": 0.7584269662921348, "recall": 0.6136363636363636}}}, "2021.test (span detection)": {"micro/f1": 0.791351974632459, "micro/f1_ci": {}, "micro/recall": 0.7936856713310975, "micro/precision": 0.78903196137043, "macro/f1": 0.791351974632459, "macro/f1_ci": {}, "macro/recall": 0.7936856713310975, "macro/precision": 0.78903196137043}, "2020.test (span detection)": {"micro/f1": 0.7644151565074135, "micro/f1_ci": {}, "micro/recall": 0.7223663725998962, "micro/precision": 0.8116618075801749, "macro/f1": 0.7644151565074135, "macro/f1_ci": {}, "macro/recall": 0.7223663725998962, "macro/precision": 0.8116618075801749}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6626406807576174, "micro/f1_ci": {"90": [0.6421811481777288, 0.6824408527817176], "95": [0.6372901150251117, 0.6854804698319146]}, "micro/recall": 0.6263622210690192, "micro/precision": 0.7033799533799534, "macro/f1": 0.6239587887403221, "macro/f1_ci": {"90": [0.602302727331785, 0.6450629596325671], "95": [0.5970260956556793, 0.6489300269035955]}, "macro/recall": 0.5921933163664825, "macro/precision": 0.6646899818440488, "per_entity_metric": {"corporation": {"f1": 0.5775401069518716, "f1_ci": {"90": [0.5159532401719902, 0.631592039800995], "95": [0.5048681813824177, 0.6443506817426007]}, "precision": 0.5901639344262295, "recall": 0.5654450261780105}, "creative_work": {"f1": 0.5414364640883977, "f1_ci": {"90": [0.48183509569087224, 0.5982905982905983], "95": [0.47114785318559554, 0.6071453442101075]}, "precision": 0.5355191256830601, "recall": 0.547486033519553}, "event": {"f1": 0.4848484848484848, "f1_ci": {"90": [0.430196666372696, 0.5392663954742951], "95": [0.41777510040160637, 0.5480195121951219]}, "precision": 0.5217391304347826, "recall": 0.4528301886792453}, "group": {"f1": 0.5752380952380952, "f1_ci": {"90": [0.5250448836936347, 0.6279727523503913], "95": [0.5077881926419612, 0.6401626025391906]}, "precision": 0.705607476635514, "recall": 0.4855305466237942}, "location": {"f1": 0.676923076923077, "f1_ci": {"90": [0.6140042598509052, 0.7335108890745321], "95": [0.6034973885094416, 0.7419877793680504]}, "precision": 0.6875, "recall": 0.6666666666666666}, "person": {"f1": 0.8333333333333334, "f1_ci": {"90": [0.8072107474406325, 0.8569065343258891], "95": [0.8017923571846364, 0.8613520685620369]}, "precision": 0.8538732394366197, "recall": 0.8137583892617449}, "product": {"f1": 0.6783919597989949, "f1_ci": {"90": [0.6273530339040599, 0.7267773646555122], "95": [0.6158022378645676, 0.7371281899611289]}, "precision": 0.7584269662921348, "recall": 0.6136363636363636}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6602098466505246, "micro/f1_ci": {"90": [0.6517159585889167, 0.6692301926939467], "95": [0.6493037560449608, 0.6705545707079725]}, "micro/recall": 0.6621184088806661, "micro/precision": 0.6583122556909634, "macro/f1": 0.6089541397781462, "macro/f1_ci": {"90": [0.5992124192664839, 0.6181423707734851], "95": [0.5972392466243823, 0.6207098127019401]}, "macro/recall": 0.6145764579798109, "macro/precision": 0.6063426866310634, "per_entity_metric": {"corporation": {"f1": 0.5315217391304348, "f1_ci": {"90": [0.5062037953042462, 0.557002893455922], "95": [0.5029997910370321, 0.5630029363336992]}, "precision": 0.5202127659574468, "recall": 0.5433333333333333}, "creative_work": {"f1": 0.44416243654822335, "f1_ci": {"90": [0.4122197188872424, 0.47462918144124866], "95": [0.406035622185493, 0.4795]}, "precision": 0.41420118343195267, "recall": 0.478796169630643}, "event": {"f1": 0.48787728847105394, "f1_ci": {"90": [0.4644448167194252, 0.5105902072328322], "95": [0.45939395779891246, 0.5167725537147063]}, "precision": 0.53470715835141, "recall": 0.44858962693357596}, "group": {"f1": 0.6115476597198496, "f1_ci": {"90": [0.5919094922318341, 0.6339441441403232], "95": [0.5886699796091751, 0.639161660780465]}, "precision": 0.6352022711142654, "recall": 0.5895915678524374}, "location": {"f1": 0.6740692357935989, "f1_ci": {"90": [0.6463384301732925, 0.6996206891806976], "95": [0.6399452184154117, 0.704592239580396]}, "precision": 0.6331288343558282, "recall": 0.7206703910614525}, "person": {"f1": 0.8471820809248555, "f1_ci": {"90": [0.8364545587859473, 0.8578287867782268], "95": [0.8343356681910271, 0.8597832152335898]}, "precision": 0.8303824362606232, "recall": 0.8646755162241888}, "product": {"f1": 0.6663185378590079, "f1_ci": {"90": [0.6430440201857166, 0.6880601156195403], "95": [0.6389027898322917, 0.6912792458554788]}, "precision": 0.6765641569459173, "recall": 0.6563786008230452}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7644151565074135, "micro/f1_ci": {}, "micro/recall": 0.7223663725998962, "micro/precision": 0.8116618075801749, "macro/f1": 0.7644151565074135, "macro/f1_ci": {}, "macro/recall": 0.7223663725998962, "macro/precision": 0.8116618075801749}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.791351974632459, "micro/f1_ci": {}, "micro/recall": 0.7936856713310975, "micro/precision": 0.78903196137043, "macro/f1": 0.791351974632459, "macro/f1_ci": {}, "macro/recall": 0.7936856713310975, "macro/precision": 0.78903196137043}
|
eval/prediction.2020.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_2021", "dataset_name": null, "local_dataset": null, "model": "tner/roberta-large-tweetner-2020", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-06, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.3, "max_grad_norm": 1}
|