File size: 5,501 Bytes
5b56490
 
3bed511
5b56490
 
 
 
d3d5152
 
 
 
 
5b56490
 
 
 
 
d3d5152
5b56490
3bed511
 
 
5b56490
d3d5152
5b56490
d3d5152
 
5b56490
d3d5152
 
5b56490
d3d5152
 
5b56490
d3d5152
 
5b56490
d3d5152
 
5b56490
d3d5152
 
5b56490
d3d5152
 
5b56490
d3d5152
 
5b56490
d3d5152
5b56490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72e8665
7aac5a8
72e8665
 
 
 
67dd914
72e8665
 
7aac5a8
72e8665
7aac5a8
5b56490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---
datasets:
- tner/bc5cdr
metrics:
- f1
- precision
- recall
pipeline_tag: token-classification
widget:
- text: Jacob Collier is a Grammy awarded artist from England.
  example_title: NER Example 1
base_model: roberta-large
model-index:
- name: tner/roberta-large-bc5cdr
  results:
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: tner/bc5cdr
      type: tner/bc5cdr
      args: tner/bc5cdr
    metrics:
    - type: f1
      value: 0.8840696387239609
      name: F1
    - type: precision
      value: 0.8728266269249876
      name: Precision
    - type: recall
      value: 0.8956060760526048
      name: Recall
    - type: f1_macro
      value: 0.8797360472482783
      name: F1 (macro)
    - type: precision_macro
      value: 0.8684274142690976
      name: Precision (macro)
    - type: recall_macro
      value: 0.8913672531528037
      name: Recall (macro)
    - type: f1_entity_span
      value: 0.886283586595552
      name: F1 (entity span)
    - type: precision_entity_span
      value: 0.8750124192747144
      name: Precision (entity span)
    - type: recall_entity_span
      value: 0.8978489142624121
      name: Recall (entity span)
---
# tner/roberta-large-bc5cdr

This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the 
[tner/bc5cdr](https://huggingface.co/datasets/tner/bc5cdr) dataset.
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
for more detail). It achieves the following results on the test set:
- F1 (micro): 0.8840696387239609
- Precision (micro): 0.8728266269249876
- Recall (micro): 0.8956060760526048
- F1 (macro): 0.8797360472482783
- Precision (macro): 0.8684274142690976
- Recall (macro): 0.8913672531528037

The per-entity breakdown of the F1 score on the test set are below:
- chemical: 0.9256943167187788
- disease: 0.8337777777777777 

For F1 scores, the confidence interval is obtained by bootstrap as below:
- F1 (micro): 
    - 90%: [0.878869501707946, 0.8890795634554179]
    - 95%: [0.8776790106527211, 0.8897422640465147] 
- F1 (macro): 
    - 90%: [0.878869501707946, 0.8890795634554179]
    - 95%: [0.8776790106527211, 0.8897422640465147] 

Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-bc5cdr/raw/main/eval/metric.json) 
and [metric file of entity span](https://huggingface.co/tner/roberta-large-bc5cdr/raw/main/eval/metric_span.json).

### Usage
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip   
```shell
pip install tner
```
and activate model as below.
```python
from tner import TransformersNER
model = TransformersNER("tner/roberta-large-bc5cdr")
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
```
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.

### Training hyperparameters

The following hyperparameters were used during training:
 - dataset: ['tner/bc5cdr']
 - dataset_split: train
 - dataset_name: None
 - local_dataset: None
 - model: roberta-large
 - crf: True
 - max_length: 128
 - epoch: 15
 - batch_size: 64
 - lr: 1e-05
 - random_seed: 42
 - gradient_accumulation_steps: 1
 - weight_decay: None
 - lr_warmup_step_ratio: 0.1
 - max_grad_norm: 10.0

The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-bc5cdr/raw/main/trainer_config.json).

### Reference
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).

```

@inproceedings{ushio-camacho-collados-2021-ner,
    title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
    author = "Ushio, Asahi  and
      Camacho-Collados, Jose",
    booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
    month = apr,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.eacl-demos.7",
    doi = "10.18653/v1/2021.eacl-demos.7",
    pages = "53--62",
    abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
}

```