asahi417 commited on
Commit
7eef4fa
·
1 Parent(s): c1ace50

model update

Browse files
Files changed (4) hide show
  1. README.md +126 -0
  2. config.json +1 -1
  3. pytorch_model.bin +2 -2
  4. tokenizer_config.json +1 -1
README.md ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - wnut2017
4
+ metrics:
5
+ - f1
6
+ - precision
7
+ - recall
8
+ model-index:
9
+ - name: tner/deberta-v3-large-wnut2017
10
+ results:
11
+ - task:
12
+ name: Token Classification
13
+ type: token-classification
14
+ dataset:
15
+ name: wnut2017
16
+ type: wnut2017
17
+ args: wnut2017
18
+ metrics:
19
+ - name: F1
20
+ type: f1
21
+ value: 0.5047353760445682
22
+ - name: Precision
23
+ type: precision
24
+ value: 0.63268156424581
25
+ - name: Recall
26
+ type: recall
27
+ value: 0.4198331788693234
28
+ - name: F1 (macro)
29
+ type: f1_macro
30
+ value: 0.4165125500830091
31
+ - name: Precision (macro)
32
+ type: precision_macro
33
+ value: 0.5356144444686111
34
+ - name: Recall (macro)
35
+ type: recall_macro
36
+ value: 0.3573954549633822
37
+ - name: F1 (entity span)
38
+ type: f1_entity_span
39
+ value: 0.6249999999999999
40
+ - name: Precision (entity span)
41
+ type: precision_entity_span
42
+ value: 0.7962697274031564
43
+ - name: Recall (entity span)
44
+ type: recall_entity_span
45
+ value: 0.5143651529193698
46
+
47
+ pipeline_tag: token-classification
48
+ widget:
49
+ - text: "Jacob Collier is a Grammy awarded artist from England."
50
+ example_title: "NER Example 1"
51
+ ---
52
+ # tner/deberta-v3-large-wnut2017
53
+
54
+ This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the
55
+ [tner/wnut2017](https://huggingface.co/datasets/tner/wnut2017) dataset.
56
+ Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
57
+ for more detail). It achieves the following results on the test set:
58
+ - F1 (micro): 0.5047353760445682
59
+ - Precision (micro): 0.63268156424581
60
+ - Recall (micro): 0.4198331788693234
61
+ - F1 (macro): 0.4165125500830091
62
+ - Precision (macro): 0.5356144444686111
63
+ - Recall (macro): 0.3573954549633822
64
+
65
+ The per-entity breakdown of the F1 score on the test set are below:
66
+ - corporation: 0.25477707006369427
67
+ - group: 0.34309623430962344
68
+ - location: 0.6187050359712232
69
+ - person: 0.6721763085399448
70
+ - product: 0.18579234972677597
71
+ - work_of_art: 0.42452830188679247
72
+
73
+ For F1 scores, the confidence interval is obtained by bootstrap as below:
74
+ - F1 (micro):
75
+ - 90%: [0.4752384997212858, 0.5329114690850492]
76
+ - 95%: [0.46929053844001617, 0.537282841423422]
77
+ - F1 (macro):
78
+ - 90%: [0.4752384997212858, 0.5329114690850492]
79
+ - 95%: [0.46929053844001617, 0.537282841423422]
80
+
81
+ Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/deberta-v3-large-wnut2017/raw/main/eval/metric.json)
82
+ and [metric file of entity span](https://huggingface.co/tner/deberta-v3-large-wnut2017/raw/main/eval/metric_span.json).
83
+
84
+
85
+ ### Training hyperparameters
86
+
87
+ The following hyperparameters were used during training:
88
+ - dataset: ['tner/wnut2017']
89
+ - dataset_split: train
90
+ - dataset_name: None
91
+ - local_dataset: None
92
+ - model: microsoft/deberta-v3-large
93
+ - crf: False
94
+ - max_length: 128
95
+ - epoch: 15
96
+ - batch_size: 16
97
+ - lr: 1e-05
98
+ - random_seed: 42
99
+ - gradient_accumulation_steps: 4
100
+ - weight_decay: 1e-07
101
+ - lr_warmup_step_ratio: 0.1
102
+ - max_grad_norm: 10.0
103
+
104
+ The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/deberta-v3-large-wnut2017/raw/main/trainer_config.json).
105
+
106
+ ### Reference
107
+ If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
108
+
109
+ ```
110
+
111
+ @inproceedings{ushio-camacho-collados-2021-ner,
112
+ title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
113
+ author = "Ushio, Asahi and
114
+ Camacho-Collados, Jose",
115
+ booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
116
+ month = apr,
117
+ year = "2021",
118
+ address = "Online",
119
+ publisher = "Association for Computational Linguistics",
120
+ url = "https://aclanthology.org/2021.eacl-demos.7",
121
+ doi = "10.18653/v1/2021.eacl-demos.7",
122
+ pages = "53--62",
123
+ abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
124
+ }
125
+
126
+ ```
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "tner_ckpt/wnut2017_deberta_v3_large/best_model",
3
  "architectures": [
4
  "DebertaV2ForTokenClassification"
5
  ],
 
1
  {
2
+ "_name_or_path": "tner_ckpt/wnut2017_deberta_large/model_ulfllg/epoch_5",
3
  "architectures": [
4
  "DebertaV2ForTokenClassification"
5
  ],
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cd25ecf2f9de84df2f277628834ec098f8598b173ed5b3f83ddc37e0ec69695c
3
- size 1736233903
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8e660f4e6df99d5522db22b282d4ee5909a0486e908f1929f93312f00705206
3
+ size 1736239407
tokenizer_config.json CHANGED
@@ -4,7 +4,7 @@
4
  "do_lower_case": false,
5
  "eos_token": "[SEP]",
6
  "mask_token": "[MASK]",
7
- "name_or_path": "tner_ckpt/wnut2017_deberta_v3_large/best_model",
8
  "pad_token": "[PAD]",
9
  "sep_token": "[SEP]",
10
  "sp_model_kwargs": {},
 
4
  "do_lower_case": false,
5
  "eos_token": "[SEP]",
6
  "mask_token": "[MASK]",
7
+ "name_or_path": "tner_ckpt/wnut2017_deberta_large/model_ulfllg/epoch_5",
8
  "pad_token": "[PAD]",
9
  "sep_token": "[SEP]",
10
  "sp_model_kwargs": {},