tlphams commited on
Commit
a8e571c
1 Parent(s): 7ae64c1

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: EleutherAI/polyglot-ko-12.8b
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: gridone-ko-llm-12.8b-v1.1d
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # gridone-ko-llm-12.8b-v1.1d
15
+
16
+ This model is a fine-tuned version of [EleutherAI/polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) on an unknown dataset.
17
+
18
+ ## Model description
19
+
20
+ More information needed
21
+
22
+ ## Intended uses & limitations
23
+
24
+ More information needed
25
+
26
+ ## Training and evaluation data
27
+
28
+ More information needed
29
+
30
+ ## Training procedure
31
+
32
+ ### Training hyperparameters
33
+
34
+ The following hyperparameters were used during training:
35
+ - learning_rate: 5e-05
36
+ - train_batch_size: 2
37
+ - eval_batch_size: 8
38
+ - seed: 42
39
+ - gradient_accumulation_steps: 8
40
+ - total_train_batch_size: 16
41
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
+ - lr_scheduler_type: linear
43
+ - num_epochs: 8
44
+
45
+ ### Framework versions
46
+
47
+ - Transformers 4.32.0.dev0
48
+ - Pytorch 2.0.0+cu117
49
+ - Datasets 2.11.0
50
+ - Tokenizers 0.13.3
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "EleutherAI/polyglot-ko-12.8b",
3
+ "architectures": [
4
+ "GPTNeoXForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": 0.1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout": 0.0,
12
+ "hidden_size": 5120,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 20480,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 2048,
17
+ "model_type": "gpt_neox",
18
+ "num_attention_heads": 40,
19
+ "num_hidden_layers": 40,
20
+ "num_steps": "global_step301000",
21
+ "rope_scaling": null,
22
+ "rotary_emb_base": 10000,
23
+ "rotary_pct": 0.5,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "float16",
26
+ "transformers_version": "4.32.0.dev0",
27
+ "use_cache": true,
28
+ "use_parallel_residual": true,
29
+ "vocab_size": 30080
30
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.32.0.dev0"
6
+ }
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e0fb9bcae2d6d87c41d93ed7644fb4792c73655c348a1528d0edc63a6597bc3
3
+ size 24400263
pytorch_model-00001-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cef5ac08250f925f719e5145cfe42b00f7bd45adb70639259cf59699e122bf71
3
+ size 9957073034
pytorch_model-00002-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:176324a1173af6a4589ad0e14d23dc782d865d797fae87d226bcfdd818f9ca74
3
+ size 9858779099
pytorch_model-00003-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61cdbf74d8266e06d4e9dde0e4614146cef11e8ee2f72df7c69199970cc23957
3
+ size 5971549140
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,531 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 25787212800
4
+ },
5
+ "weight_map": {
6
+ "embed_out.weight": "pytorch_model-00003-of-00003.bin",
7
+ "gpt_neox.embed_in.weight": "pytorch_model-00001-of-00003.bin",
8
+ "gpt_neox.final_layer_norm.bias": "pytorch_model-00003-of-00003.bin",
9
+ "gpt_neox.final_layer_norm.weight": "pytorch_model-00003-of-00003.bin",
10
+ "gpt_neox.layers.0.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
11
+ "gpt_neox.layers.0.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
12
+ "gpt_neox.layers.0.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
13
+ "gpt_neox.layers.0.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
14
+ "gpt_neox.layers.0.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
15
+ "gpt_neox.layers.0.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
16
+ "gpt_neox.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
17
+ "gpt_neox.layers.0.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
18
+ "gpt_neox.layers.0.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
19
+ "gpt_neox.layers.0.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
20
+ "gpt_neox.layers.0.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
21
+ "gpt_neox.layers.0.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
22
+ "gpt_neox.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
23
+ "gpt_neox.layers.1.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
24
+ "gpt_neox.layers.1.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
25
+ "gpt_neox.layers.1.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
26
+ "gpt_neox.layers.1.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
27
+ "gpt_neox.layers.1.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
28
+ "gpt_neox.layers.1.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
29
+ "gpt_neox.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
30
+ "gpt_neox.layers.1.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
31
+ "gpt_neox.layers.1.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
32
+ "gpt_neox.layers.1.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
33
+ "gpt_neox.layers.1.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
34
+ "gpt_neox.layers.1.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
35
+ "gpt_neox.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
36
+ "gpt_neox.layers.10.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
37
+ "gpt_neox.layers.10.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
38
+ "gpt_neox.layers.10.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
39
+ "gpt_neox.layers.10.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
40
+ "gpt_neox.layers.10.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
41
+ "gpt_neox.layers.10.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
42
+ "gpt_neox.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
43
+ "gpt_neox.layers.10.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
44
+ "gpt_neox.layers.10.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
45
+ "gpt_neox.layers.10.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
46
+ "gpt_neox.layers.10.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
47
+ "gpt_neox.layers.10.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
48
+ "gpt_neox.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
49
+ "gpt_neox.layers.11.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
50
+ "gpt_neox.layers.11.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
51
+ "gpt_neox.layers.11.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
52
+ "gpt_neox.layers.11.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
53
+ "gpt_neox.layers.11.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
54
+ "gpt_neox.layers.11.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
55
+ "gpt_neox.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
56
+ "gpt_neox.layers.11.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
57
+ "gpt_neox.layers.11.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
58
+ "gpt_neox.layers.11.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
59
+ "gpt_neox.layers.11.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
60
+ "gpt_neox.layers.11.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
61
+ "gpt_neox.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
62
+ "gpt_neox.layers.12.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
63
+ "gpt_neox.layers.12.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
64
+ "gpt_neox.layers.12.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
65
+ "gpt_neox.layers.12.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
66
+ "gpt_neox.layers.12.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
67
+ "gpt_neox.layers.12.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
68
+ "gpt_neox.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
69
+ "gpt_neox.layers.12.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
70
+ "gpt_neox.layers.12.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
71
+ "gpt_neox.layers.12.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
72
+ "gpt_neox.layers.12.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
73
+ "gpt_neox.layers.12.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
74
+ "gpt_neox.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
75
+ "gpt_neox.layers.13.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
76
+ "gpt_neox.layers.13.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
77
+ "gpt_neox.layers.13.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
78
+ "gpt_neox.layers.13.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
79
+ "gpt_neox.layers.13.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
80
+ "gpt_neox.layers.13.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
81
+ "gpt_neox.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
82
+ "gpt_neox.layers.13.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
83
+ "gpt_neox.layers.13.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
84
+ "gpt_neox.layers.13.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
85
+ "gpt_neox.layers.13.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
86
+ "gpt_neox.layers.13.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
87
+ "gpt_neox.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
88
+ "gpt_neox.layers.14.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
89
+ "gpt_neox.layers.14.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
90
+ "gpt_neox.layers.14.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
91
+ "gpt_neox.layers.14.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
92
+ "gpt_neox.layers.14.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
93
+ "gpt_neox.layers.14.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
94
+ "gpt_neox.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
95
+ "gpt_neox.layers.14.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
96
+ "gpt_neox.layers.14.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
97
+ "gpt_neox.layers.14.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
98
+ "gpt_neox.layers.14.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
99
+ "gpt_neox.layers.14.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
100
+ "gpt_neox.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
101
+ "gpt_neox.layers.15.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
102
+ "gpt_neox.layers.15.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
103
+ "gpt_neox.layers.15.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
104
+ "gpt_neox.layers.15.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
105
+ "gpt_neox.layers.15.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
106
+ "gpt_neox.layers.15.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
107
+ "gpt_neox.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
108
+ "gpt_neox.layers.15.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
109
+ "gpt_neox.layers.15.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
110
+ "gpt_neox.layers.15.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
111
+ "gpt_neox.layers.15.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
112
+ "gpt_neox.layers.15.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
113
+ "gpt_neox.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
114
+ "gpt_neox.layers.16.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
115
+ "gpt_neox.layers.16.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
116
+ "gpt_neox.layers.16.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
117
+ "gpt_neox.layers.16.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
118
+ "gpt_neox.layers.16.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
119
+ "gpt_neox.layers.16.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
120
+ "gpt_neox.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
121
+ "gpt_neox.layers.16.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
122
+ "gpt_neox.layers.16.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
123
+ "gpt_neox.layers.16.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
124
+ "gpt_neox.layers.16.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
125
+ "gpt_neox.layers.16.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
126
+ "gpt_neox.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
127
+ "gpt_neox.layers.17.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
128
+ "gpt_neox.layers.17.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
129
+ "gpt_neox.layers.17.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
130
+ "gpt_neox.layers.17.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
131
+ "gpt_neox.layers.17.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
132
+ "gpt_neox.layers.17.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
133
+ "gpt_neox.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
134
+ "gpt_neox.layers.17.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
135
+ "gpt_neox.layers.17.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
136
+ "gpt_neox.layers.17.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
137
+ "gpt_neox.layers.17.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
138
+ "gpt_neox.layers.17.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
139
+ "gpt_neox.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
140
+ "gpt_neox.layers.18.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
141
+ "gpt_neox.layers.18.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
142
+ "gpt_neox.layers.18.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
143
+ "gpt_neox.layers.18.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
144
+ "gpt_neox.layers.18.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
145
+ "gpt_neox.layers.18.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
146
+ "gpt_neox.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
147
+ "gpt_neox.layers.18.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
148
+ "gpt_neox.layers.18.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
149
+ "gpt_neox.layers.18.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
150
+ "gpt_neox.layers.18.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
151
+ "gpt_neox.layers.18.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
152
+ "gpt_neox.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
153
+ "gpt_neox.layers.19.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
154
+ "gpt_neox.layers.19.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
155
+ "gpt_neox.layers.19.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
156
+ "gpt_neox.layers.19.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
157
+ "gpt_neox.layers.19.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
158
+ "gpt_neox.layers.19.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
159
+ "gpt_neox.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
160
+ "gpt_neox.layers.19.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
161
+ "gpt_neox.layers.19.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
162
+ "gpt_neox.layers.19.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
163
+ "gpt_neox.layers.19.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
164
+ "gpt_neox.layers.19.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
165
+ "gpt_neox.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
166
+ "gpt_neox.layers.2.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
167
+ "gpt_neox.layers.2.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
168
+ "gpt_neox.layers.2.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
169
+ "gpt_neox.layers.2.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
170
+ "gpt_neox.layers.2.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
171
+ "gpt_neox.layers.2.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
172
+ "gpt_neox.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
173
+ "gpt_neox.layers.2.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
174
+ "gpt_neox.layers.2.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
175
+ "gpt_neox.layers.2.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
176
+ "gpt_neox.layers.2.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
177
+ "gpt_neox.layers.2.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
178
+ "gpt_neox.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
179
+ "gpt_neox.layers.20.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
180
+ "gpt_neox.layers.20.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
181
+ "gpt_neox.layers.20.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
182
+ "gpt_neox.layers.20.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
183
+ "gpt_neox.layers.20.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
184
+ "gpt_neox.layers.20.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
185
+ "gpt_neox.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
186
+ "gpt_neox.layers.20.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
187
+ "gpt_neox.layers.20.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
188
+ "gpt_neox.layers.20.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
189
+ "gpt_neox.layers.20.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
190
+ "gpt_neox.layers.20.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
191
+ "gpt_neox.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
192
+ "gpt_neox.layers.21.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
193
+ "gpt_neox.layers.21.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
194
+ "gpt_neox.layers.21.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
195
+ "gpt_neox.layers.21.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
196
+ "gpt_neox.layers.21.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
197
+ "gpt_neox.layers.21.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
198
+ "gpt_neox.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
199
+ "gpt_neox.layers.21.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
200
+ "gpt_neox.layers.21.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
201
+ "gpt_neox.layers.21.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
202
+ "gpt_neox.layers.21.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
203
+ "gpt_neox.layers.21.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
204
+ "gpt_neox.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
205
+ "gpt_neox.layers.22.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
206
+ "gpt_neox.layers.22.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
207
+ "gpt_neox.layers.22.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
208
+ "gpt_neox.layers.22.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
209
+ "gpt_neox.layers.22.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
210
+ "gpt_neox.layers.22.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
211
+ "gpt_neox.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
212
+ "gpt_neox.layers.22.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
213
+ "gpt_neox.layers.22.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
214
+ "gpt_neox.layers.22.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
215
+ "gpt_neox.layers.22.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
216
+ "gpt_neox.layers.22.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
217
+ "gpt_neox.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
218
+ "gpt_neox.layers.23.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
219
+ "gpt_neox.layers.23.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
220
+ "gpt_neox.layers.23.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
221
+ "gpt_neox.layers.23.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
222
+ "gpt_neox.layers.23.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
223
+ "gpt_neox.layers.23.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
224
+ "gpt_neox.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
225
+ "gpt_neox.layers.23.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
226
+ "gpt_neox.layers.23.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
227
+ "gpt_neox.layers.23.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
228
+ "gpt_neox.layers.23.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
229
+ "gpt_neox.layers.23.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
230
+ "gpt_neox.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
231
+ "gpt_neox.layers.24.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
232
+ "gpt_neox.layers.24.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
233
+ "gpt_neox.layers.24.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
234
+ "gpt_neox.layers.24.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
235
+ "gpt_neox.layers.24.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
236
+ "gpt_neox.layers.24.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
237
+ "gpt_neox.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
238
+ "gpt_neox.layers.24.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
239
+ "gpt_neox.layers.24.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
240
+ "gpt_neox.layers.24.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
241
+ "gpt_neox.layers.24.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
242
+ "gpt_neox.layers.24.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
243
+ "gpt_neox.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
244
+ "gpt_neox.layers.25.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
245
+ "gpt_neox.layers.25.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
246
+ "gpt_neox.layers.25.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
247
+ "gpt_neox.layers.25.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
248
+ "gpt_neox.layers.25.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
249
+ "gpt_neox.layers.25.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
250
+ "gpt_neox.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
251
+ "gpt_neox.layers.25.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
252
+ "gpt_neox.layers.25.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
253
+ "gpt_neox.layers.25.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
254
+ "gpt_neox.layers.25.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
255
+ "gpt_neox.layers.25.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
256
+ "gpt_neox.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
257
+ "gpt_neox.layers.26.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
258
+ "gpt_neox.layers.26.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
259
+ "gpt_neox.layers.26.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
260
+ "gpt_neox.layers.26.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
261
+ "gpt_neox.layers.26.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
262
+ "gpt_neox.layers.26.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
263
+ "gpt_neox.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
264
+ "gpt_neox.layers.26.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
265
+ "gpt_neox.layers.26.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
266
+ "gpt_neox.layers.26.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
267
+ "gpt_neox.layers.26.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
268
+ "gpt_neox.layers.26.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
269
+ "gpt_neox.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
270
+ "gpt_neox.layers.27.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
271
+ "gpt_neox.layers.27.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
272
+ "gpt_neox.layers.27.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
273
+ "gpt_neox.layers.27.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
274
+ "gpt_neox.layers.27.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
275
+ "gpt_neox.layers.27.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
276
+ "gpt_neox.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
277
+ "gpt_neox.layers.27.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
278
+ "gpt_neox.layers.27.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
279
+ "gpt_neox.layers.27.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
280
+ "gpt_neox.layers.27.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
281
+ "gpt_neox.layers.27.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
282
+ "gpt_neox.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
283
+ "gpt_neox.layers.28.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
284
+ "gpt_neox.layers.28.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
285
+ "gpt_neox.layers.28.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
286
+ "gpt_neox.layers.28.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
287
+ "gpt_neox.layers.28.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
288
+ "gpt_neox.layers.28.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
289
+ "gpt_neox.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
290
+ "gpt_neox.layers.28.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
291
+ "gpt_neox.layers.28.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
292
+ "gpt_neox.layers.28.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
293
+ "gpt_neox.layers.28.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
294
+ "gpt_neox.layers.28.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
295
+ "gpt_neox.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
296
+ "gpt_neox.layers.29.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
297
+ "gpt_neox.layers.29.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
298
+ "gpt_neox.layers.29.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
299
+ "gpt_neox.layers.29.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
300
+ "gpt_neox.layers.29.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
301
+ "gpt_neox.layers.29.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
302
+ "gpt_neox.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
303
+ "gpt_neox.layers.29.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
304
+ "gpt_neox.layers.29.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
305
+ "gpt_neox.layers.29.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
306
+ "gpt_neox.layers.29.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
307
+ "gpt_neox.layers.29.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
308
+ "gpt_neox.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
309
+ "gpt_neox.layers.3.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
310
+ "gpt_neox.layers.3.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
311
+ "gpt_neox.layers.3.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
312
+ "gpt_neox.layers.3.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
313
+ "gpt_neox.layers.3.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
314
+ "gpt_neox.layers.3.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
315
+ "gpt_neox.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
316
+ "gpt_neox.layers.3.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
317
+ "gpt_neox.layers.3.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
318
+ "gpt_neox.layers.3.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
319
+ "gpt_neox.layers.3.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
320
+ "gpt_neox.layers.3.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
321
+ "gpt_neox.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
322
+ "gpt_neox.layers.30.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
323
+ "gpt_neox.layers.30.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
324
+ "gpt_neox.layers.30.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
325
+ "gpt_neox.layers.30.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
326
+ "gpt_neox.layers.30.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
327
+ "gpt_neox.layers.30.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
328
+ "gpt_neox.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
329
+ "gpt_neox.layers.30.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
330
+ "gpt_neox.layers.30.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
331
+ "gpt_neox.layers.30.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
332
+ "gpt_neox.layers.30.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
333
+ "gpt_neox.layers.30.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
334
+ "gpt_neox.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
335
+ "gpt_neox.layers.31.attention.dense.bias": "pytorch_model-00003-of-00003.bin",
336
+ "gpt_neox.layers.31.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
337
+ "gpt_neox.layers.31.attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
338
+ "gpt_neox.layers.31.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
339
+ "gpt_neox.layers.31.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
340
+ "gpt_neox.layers.31.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
341
+ "gpt_neox.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
342
+ "gpt_neox.layers.31.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00003.bin",
343
+ "gpt_neox.layers.31.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
344
+ "gpt_neox.layers.31.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00003.bin",
345
+ "gpt_neox.layers.31.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
346
+ "gpt_neox.layers.31.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
347
+ "gpt_neox.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
348
+ "gpt_neox.layers.32.attention.dense.bias": "pytorch_model-00003-of-00003.bin",
349
+ "gpt_neox.layers.32.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
350
+ "gpt_neox.layers.32.attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
351
+ "gpt_neox.layers.32.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
352
+ "gpt_neox.layers.32.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
353
+ "gpt_neox.layers.32.input_layernorm.bias": "pytorch_model-00003-of-00003.bin",
354
+ "gpt_neox.layers.32.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
355
+ "gpt_neox.layers.32.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00003.bin",
356
+ "gpt_neox.layers.32.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
357
+ "gpt_neox.layers.32.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00003.bin",
358
+ "gpt_neox.layers.32.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
359
+ "gpt_neox.layers.32.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
360
+ "gpt_neox.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
361
+ "gpt_neox.layers.33.attention.dense.bias": "pytorch_model-00003-of-00003.bin",
362
+ "gpt_neox.layers.33.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
363
+ "gpt_neox.layers.33.attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
364
+ "gpt_neox.layers.33.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
365
+ "gpt_neox.layers.33.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
366
+ "gpt_neox.layers.33.input_layernorm.bias": "pytorch_model-00003-of-00003.bin",
367
+ "gpt_neox.layers.33.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
368
+ "gpt_neox.layers.33.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00003.bin",
369
+ "gpt_neox.layers.33.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
370
+ "gpt_neox.layers.33.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00003.bin",
371
+ "gpt_neox.layers.33.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
372
+ "gpt_neox.layers.33.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
373
+ "gpt_neox.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
374
+ "gpt_neox.layers.34.attention.dense.bias": "pytorch_model-00003-of-00003.bin",
375
+ "gpt_neox.layers.34.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
376
+ "gpt_neox.layers.34.attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
377
+ "gpt_neox.layers.34.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
378
+ "gpt_neox.layers.34.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
379
+ "gpt_neox.layers.34.input_layernorm.bias": "pytorch_model-00003-of-00003.bin",
380
+ "gpt_neox.layers.34.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
381
+ "gpt_neox.layers.34.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00003.bin",
382
+ "gpt_neox.layers.34.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
383
+ "gpt_neox.layers.34.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00003.bin",
384
+ "gpt_neox.layers.34.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
385
+ "gpt_neox.layers.34.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
386
+ "gpt_neox.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
387
+ "gpt_neox.layers.35.attention.dense.bias": "pytorch_model-00003-of-00003.bin",
388
+ "gpt_neox.layers.35.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
389
+ "gpt_neox.layers.35.attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
390
+ "gpt_neox.layers.35.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
391
+ "gpt_neox.layers.35.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
392
+ "gpt_neox.layers.35.input_layernorm.bias": "pytorch_model-00003-of-00003.bin",
393
+ "gpt_neox.layers.35.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
394
+ "gpt_neox.layers.35.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00003.bin",
395
+ "gpt_neox.layers.35.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
396
+ "gpt_neox.layers.35.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00003.bin",
397
+ "gpt_neox.layers.35.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
398
+ "gpt_neox.layers.35.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
399
+ "gpt_neox.layers.35.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
400
+ "gpt_neox.layers.36.attention.dense.bias": "pytorch_model-00003-of-00003.bin",
401
+ "gpt_neox.layers.36.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
402
+ "gpt_neox.layers.36.attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
403
+ "gpt_neox.layers.36.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
404
+ "gpt_neox.layers.36.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
405
+ "gpt_neox.layers.36.input_layernorm.bias": "pytorch_model-00003-of-00003.bin",
406
+ "gpt_neox.layers.36.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
407
+ "gpt_neox.layers.36.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00003.bin",
408
+ "gpt_neox.layers.36.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
409
+ "gpt_neox.layers.36.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00003.bin",
410
+ "gpt_neox.layers.36.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
411
+ "gpt_neox.layers.36.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
412
+ "gpt_neox.layers.36.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
413
+ "gpt_neox.layers.37.attention.dense.bias": "pytorch_model-00003-of-00003.bin",
414
+ "gpt_neox.layers.37.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
415
+ "gpt_neox.layers.37.attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
416
+ "gpt_neox.layers.37.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
417
+ "gpt_neox.layers.37.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
418
+ "gpt_neox.layers.37.input_layernorm.bias": "pytorch_model-00003-of-00003.bin",
419
+ "gpt_neox.layers.37.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
420
+ "gpt_neox.layers.37.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00003.bin",
421
+ "gpt_neox.layers.37.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
422
+ "gpt_neox.layers.37.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00003.bin",
423
+ "gpt_neox.layers.37.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
424
+ "gpt_neox.layers.37.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
425
+ "gpt_neox.layers.37.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
426
+ "gpt_neox.layers.38.attention.dense.bias": "pytorch_model-00003-of-00003.bin",
427
+ "gpt_neox.layers.38.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
428
+ "gpt_neox.layers.38.attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
429
+ "gpt_neox.layers.38.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
430
+ "gpt_neox.layers.38.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
431
+ "gpt_neox.layers.38.input_layernorm.bias": "pytorch_model-00003-of-00003.bin",
432
+ "gpt_neox.layers.38.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
433
+ "gpt_neox.layers.38.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00003.bin",
434
+ "gpt_neox.layers.38.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
435
+ "gpt_neox.layers.38.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00003.bin",
436
+ "gpt_neox.layers.38.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
437
+ "gpt_neox.layers.38.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
438
+ "gpt_neox.layers.38.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
439
+ "gpt_neox.layers.39.attention.dense.bias": "pytorch_model-00003-of-00003.bin",
440
+ "gpt_neox.layers.39.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
441
+ "gpt_neox.layers.39.attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
442
+ "gpt_neox.layers.39.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
443
+ "gpt_neox.layers.39.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
444
+ "gpt_neox.layers.39.input_layernorm.bias": "pytorch_model-00003-of-00003.bin",
445
+ "gpt_neox.layers.39.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
446
+ "gpt_neox.layers.39.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00003.bin",
447
+ "gpt_neox.layers.39.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
448
+ "gpt_neox.layers.39.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00003.bin",
449
+ "gpt_neox.layers.39.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
450
+ "gpt_neox.layers.39.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
451
+ "gpt_neox.layers.39.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
452
+ "gpt_neox.layers.4.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
453
+ "gpt_neox.layers.4.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
454
+ "gpt_neox.layers.4.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
455
+ "gpt_neox.layers.4.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
456
+ "gpt_neox.layers.4.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
457
+ "gpt_neox.layers.4.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
458
+ "gpt_neox.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
459
+ "gpt_neox.layers.4.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
460
+ "gpt_neox.layers.4.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
461
+ "gpt_neox.layers.4.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
462
+ "gpt_neox.layers.4.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
463
+ "gpt_neox.layers.4.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
464
+ "gpt_neox.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
465
+ "gpt_neox.layers.5.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
466
+ "gpt_neox.layers.5.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
467
+ "gpt_neox.layers.5.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
468
+ "gpt_neox.layers.5.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
469
+ "gpt_neox.layers.5.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
470
+ "gpt_neox.layers.5.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
471
+ "gpt_neox.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
472
+ "gpt_neox.layers.5.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
473
+ "gpt_neox.layers.5.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
474
+ "gpt_neox.layers.5.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
475
+ "gpt_neox.layers.5.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
476
+ "gpt_neox.layers.5.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
477
+ "gpt_neox.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
478
+ "gpt_neox.layers.6.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
479
+ "gpt_neox.layers.6.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
480
+ "gpt_neox.layers.6.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
481
+ "gpt_neox.layers.6.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
482
+ "gpt_neox.layers.6.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
483
+ "gpt_neox.layers.6.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
484
+ "gpt_neox.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
485
+ "gpt_neox.layers.6.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
486
+ "gpt_neox.layers.6.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
487
+ "gpt_neox.layers.6.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
488
+ "gpt_neox.layers.6.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
489
+ "gpt_neox.layers.6.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
490
+ "gpt_neox.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
491
+ "gpt_neox.layers.7.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
492
+ "gpt_neox.layers.7.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
493
+ "gpt_neox.layers.7.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
494
+ "gpt_neox.layers.7.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
495
+ "gpt_neox.layers.7.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
496
+ "gpt_neox.layers.7.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
497
+ "gpt_neox.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
498
+ "gpt_neox.layers.7.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
499
+ "gpt_neox.layers.7.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
500
+ "gpt_neox.layers.7.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
501
+ "gpt_neox.layers.7.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
502
+ "gpt_neox.layers.7.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
503
+ "gpt_neox.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
504
+ "gpt_neox.layers.8.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
505
+ "gpt_neox.layers.8.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
506
+ "gpt_neox.layers.8.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
507
+ "gpt_neox.layers.8.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
508
+ "gpt_neox.layers.8.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
509
+ "gpt_neox.layers.8.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
510
+ "gpt_neox.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
511
+ "gpt_neox.layers.8.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
512
+ "gpt_neox.layers.8.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
513
+ "gpt_neox.layers.8.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
514
+ "gpt_neox.layers.8.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
515
+ "gpt_neox.layers.8.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
516
+ "gpt_neox.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
517
+ "gpt_neox.layers.9.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
518
+ "gpt_neox.layers.9.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
519
+ "gpt_neox.layers.9.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
520
+ "gpt_neox.layers.9.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
521
+ "gpt_neox.layers.9.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
522
+ "gpt_neox.layers.9.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
523
+ "gpt_neox.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
524
+ "gpt_neox.layers.9.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
525
+ "gpt_neox.layers.9.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
526
+ "gpt_neox.layers.9.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
527
+ "gpt_neox.layers.9.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
528
+ "gpt_neox.layers.9.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
529
+ "gpt_neox.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin"
530
+ }
531
+ }
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7508d4b8dd267de5cc58e972da25236687927651336a28f292c92f7f23951475
3
+ size 14575
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b02be2c961050591e39e048540caca52c7186951e99ec479ac50c29b65770a6
3
+ size 627
special_tokens_map.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|endoftext|>",
4
+ "<|sep|>",
5
+ "<|acc|>",
6
+ "<|tel|>",
7
+ "<|rrn|>"
8
+ ],
9
+ "eos_token": "<|endoftext|>",
10
+ "pad_token": "<|endoftext|>"
11
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "eos_token": "<|endoftext|>",
4
+ "model_max_length": 1000000000000000019884624838656,
5
+ "pad_token": "<|endoftext|>",
6
+ "tokenizer_class": "PreTrainedTokenizerFast"
7
+ }
trainer_state.json ADDED
@@ -0,0 +1,2713 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.998330550918197,
5
+ "eval_steps": 500,
6
+ "global_step": 449,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 5e-05,
14
+ "loss": 2.3424,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 5e-05,
20
+ "loss": 2.3416,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.02,
25
+ "learning_rate": 4.995805369127517e-05,
26
+ "loss": 2.3702,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.03,
31
+ "learning_rate": 4.9916107382550336e-05,
32
+ "loss": 2.1306,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.03,
37
+ "learning_rate": 4.9874161073825505e-05,
38
+ "loss": 2.3988,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.04,
43
+ "learning_rate": 4.9874161073825505e-05,
44
+ "loss": 2.6274,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.05,
49
+ "learning_rate": 4.9874161073825505e-05,
50
+ "loss": 2.693,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.05,
55
+ "learning_rate": 4.983221476510067e-05,
56
+ "loss": 2.6681,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.06,
61
+ "learning_rate": 4.9790268456375845e-05,
62
+ "loss": 2.3159,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.07,
67
+ "learning_rate": 4.974832214765101e-05,
68
+ "loss": 2.2781,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.07,
73
+ "learning_rate": 4.970637583892618e-05,
74
+ "loss": 2.328,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.08,
79
+ "learning_rate": 4.966442953020135e-05,
80
+ "loss": 2.1489,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.09,
85
+ "learning_rate": 4.962248322147651e-05,
86
+ "loss": 2.0534,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.09,
91
+ "learning_rate": 4.958053691275168e-05,
92
+ "loss": 2.1968,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.1,
97
+ "learning_rate": 4.9538590604026845e-05,
98
+ "loss": 1.99,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.11,
103
+ "learning_rate": 4.9496644295302015e-05,
104
+ "loss": 1.9691,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.11,
109
+ "learning_rate": 4.945469798657718e-05,
110
+ "loss": 2.0833,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.12,
115
+ "learning_rate": 4.9412751677852355e-05,
116
+ "loss": 1.9973,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.13,
121
+ "learning_rate": 4.937080536912752e-05,
122
+ "loss": 1.9415,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.13,
127
+ "learning_rate": 4.932885906040269e-05,
128
+ "loss": 2.0112,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.14,
133
+ "learning_rate": 4.928691275167786e-05,
134
+ "loss": 2.1733,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.15,
139
+ "learning_rate": 4.924496644295302e-05,
140
+ "loss": 2.4138,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.15,
145
+ "learning_rate": 4.920302013422819e-05,
146
+ "loss": 2.1533,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.16,
151
+ "learning_rate": 4.9161073825503354e-05,
152
+ "loss": 2.0635,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.17,
157
+ "learning_rate": 4.9119127516778524e-05,
158
+ "loss": 1.9881,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.17,
163
+ "learning_rate": 4.9077181208053694e-05,
164
+ "loss": 1.9963,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.18,
169
+ "learning_rate": 4.9035234899328864e-05,
170
+ "loss": 2.0764,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.19,
175
+ "learning_rate": 4.8993288590604034e-05,
176
+ "loss": 1.959,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.19,
181
+ "learning_rate": 4.89513422818792e-05,
182
+ "loss": 2.0066,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.2,
187
+ "learning_rate": 4.890939597315437e-05,
188
+ "loss": 1.9056,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.21,
193
+ "learning_rate": 4.886744966442953e-05,
194
+ "loss": 1.9512,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.21,
199
+ "learning_rate": 4.88255033557047e-05,
200
+ "loss": 1.962,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.22,
205
+ "learning_rate": 4.878355704697986e-05,
206
+ "loss": 1.8714,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.23,
211
+ "learning_rate": 4.874161073825503e-05,
212
+ "loss": 1.8087,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.23,
217
+ "learning_rate": 4.86996644295302e-05,
218
+ "loss": 1.9392,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.24,
223
+ "learning_rate": 4.865771812080537e-05,
224
+ "loss": 1.9197,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.25,
229
+ "learning_rate": 4.861577181208054e-05,
230
+ "loss": 1.9624,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.25,
235
+ "learning_rate": 4.8573825503355706e-05,
236
+ "loss": 1.9549,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.26,
241
+ "learning_rate": 4.8531879194630876e-05,
242
+ "loss": 1.8778,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.27,
247
+ "learning_rate": 4.848993288590604e-05,
248
+ "loss": 1.9317,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.27,
253
+ "learning_rate": 4.844798657718121e-05,
254
+ "loss": 1.9082,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.28,
259
+ "learning_rate": 4.840604026845638e-05,
260
+ "loss": 1.8862,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.29,
265
+ "learning_rate": 4.836409395973154e-05,
266
+ "loss": 1.9192,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.29,
271
+ "learning_rate": 4.832214765100672e-05,
272
+ "loss": 1.9409,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.3,
277
+ "learning_rate": 4.828020134228188e-05,
278
+ "loss": 1.8827,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.31,
283
+ "learning_rate": 4.823825503355705e-05,
284
+ "loss": 1.8866,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.31,
289
+ "learning_rate": 4.8196308724832215e-05,
290
+ "loss": 1.9024,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.32,
295
+ "learning_rate": 4.8154362416107385e-05,
296
+ "loss": 1.8225,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.33,
301
+ "learning_rate": 4.8112416107382555e-05,
302
+ "loss": 1.846,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.33,
307
+ "learning_rate": 4.807046979865772e-05,
308
+ "loss": 1.9671,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.34,
313
+ "learning_rate": 4.802852348993289e-05,
314
+ "loss": 1.9424,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.35,
319
+ "learning_rate": 4.798657718120805e-05,
320
+ "loss": 1.8501,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.35,
325
+ "learning_rate": 4.794463087248323e-05,
326
+ "loss": 1.866,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.36,
331
+ "learning_rate": 4.790268456375839e-05,
332
+ "loss": 1.8838,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.37,
337
+ "learning_rate": 4.786073825503356e-05,
338
+ "loss": 1.8818,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.37,
343
+ "learning_rate": 4.7818791946308725e-05,
344
+ "loss": 1.879,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.38,
349
+ "learning_rate": 4.7776845637583895e-05,
350
+ "loss": 1.8943,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.39,
355
+ "learning_rate": 4.7734899328859064e-05,
356
+ "loss": 1.8722,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.39,
361
+ "learning_rate": 4.769295302013423e-05,
362
+ "loss": 1.8072,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.4,
367
+ "learning_rate": 4.76510067114094e-05,
368
+ "loss": 1.8448,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.41,
373
+ "learning_rate": 4.760906040268457e-05,
374
+ "loss": 1.87,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.41,
379
+ "learning_rate": 4.756711409395974e-05,
380
+ "loss": 1.9172,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.42,
385
+ "learning_rate": 4.75251677852349e-05,
386
+ "loss": 1.8836,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.43,
391
+ "learning_rate": 4.748322147651007e-05,
392
+ "loss": 1.8625,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.43,
397
+ "learning_rate": 4.744127516778524e-05,
398
+ "loss": 1.8304,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.44,
403
+ "learning_rate": 4.7399328859060404e-05,
404
+ "loss": 1.8414,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.45,
409
+ "learning_rate": 4.7357382550335574e-05,
410
+ "loss": 1.9091,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.45,
415
+ "learning_rate": 4.731543624161074e-05,
416
+ "loss": 1.8627,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.46,
421
+ "learning_rate": 4.727348993288591e-05,
422
+ "loss": 1.881,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.47,
427
+ "learning_rate": 4.723154362416108e-05,
428
+ "loss": 1.7762,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.47,
433
+ "learning_rate": 4.718959731543625e-05,
434
+ "loss": 1.8732,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.48,
439
+ "learning_rate": 4.714765100671141e-05,
440
+ "loss": 1.858,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.49,
445
+ "learning_rate": 4.710570469798658e-05,
446
+ "loss": 1.8388,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.49,
451
+ "learning_rate": 4.706375838926175e-05,
452
+ "loss": 1.8227,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.5,
457
+ "learning_rate": 4.702181208053691e-05,
458
+ "loss": 1.7938,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.51,
463
+ "learning_rate": 4.697986577181208e-05,
464
+ "loss": 1.8297,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.51,
469
+ "learning_rate": 4.6937919463087246e-05,
470
+ "loss": 1.8499,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.52,
475
+ "learning_rate": 4.6895973154362416e-05,
476
+ "loss": 1.8268,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.53,
481
+ "learning_rate": 4.6854026845637586e-05,
482
+ "loss": 1.8147,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.53,
487
+ "learning_rate": 4.6812080536912756e-05,
488
+ "loss": 1.8521,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.54,
493
+ "learning_rate": 4.6770134228187926e-05,
494
+ "loss": 1.851,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.55,
499
+ "learning_rate": 4.672818791946309e-05,
500
+ "loss": 1.8616,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.55,
505
+ "learning_rate": 4.668624161073826e-05,
506
+ "loss": 1.8746,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.56,
511
+ "learning_rate": 4.664429530201342e-05,
512
+ "loss": 1.8594,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.57,
517
+ "learning_rate": 4.660234899328859e-05,
518
+ "loss": 1.8699,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.57,
523
+ "learning_rate": 4.6560402684563755e-05,
524
+ "loss": 1.8696,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.58,
529
+ "learning_rate": 4.6518456375838925e-05,
530
+ "loss": 1.8658,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.59,
535
+ "learning_rate": 4.6476510067114095e-05,
536
+ "loss": 1.8581,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.59,
541
+ "learning_rate": 4.6434563758389265e-05,
542
+ "loss": 1.8231,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.6,
547
+ "learning_rate": 4.6392617449664435e-05,
548
+ "loss": 1.8652,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.61,
553
+ "learning_rate": 4.63506711409396e-05,
554
+ "loss": 1.8778,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.61,
559
+ "learning_rate": 4.630872483221477e-05,
560
+ "loss": 1.8551,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.62,
565
+ "learning_rate": 4.626677852348993e-05,
566
+ "loss": 1.8503,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.63,
571
+ "learning_rate": 4.62248322147651e-05,
572
+ "loss": 1.8302,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.63,
577
+ "learning_rate": 4.618288590604027e-05,
578
+ "loss": 1.8571,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.64,
583
+ "learning_rate": 4.6140939597315434e-05,
584
+ "loss": 1.8549,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.65,
589
+ "learning_rate": 4.609899328859061e-05,
590
+ "loss": 1.8925,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.65,
595
+ "learning_rate": 4.6057046979865774e-05,
596
+ "loss": 1.8608,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.66,
601
+ "learning_rate": 4.6015100671140944e-05,
602
+ "loss": 1.8521,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.67,
607
+ "learning_rate": 4.597315436241611e-05,
608
+ "loss": 1.8835,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.67,
613
+ "learning_rate": 4.593120805369128e-05,
614
+ "loss": 1.7923,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.68,
619
+ "learning_rate": 4.588926174496645e-05,
620
+ "loss": 1.7976,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.69,
625
+ "learning_rate": 4.584731543624161e-05,
626
+ "loss": 1.8535,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.69,
631
+ "learning_rate": 4.580536912751678e-05,
632
+ "loss": 1.829,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.7,
637
+ "learning_rate": 4.576342281879195e-05,
638
+ "loss": 1.8247,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.71,
643
+ "learning_rate": 4.572147651006712e-05,
644
+ "loss": 1.8068,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.71,
649
+ "learning_rate": 4.5679530201342284e-05,
650
+ "loss": 1.7786,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.72,
655
+ "learning_rate": 4.5637583892617453e-05,
656
+ "loss": 1.8292,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.73,
661
+ "learning_rate": 4.559563758389262e-05,
662
+ "loss": 1.8265,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.73,
667
+ "learning_rate": 4.5553691275167787e-05,
668
+ "loss": 1.8142,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.74,
673
+ "learning_rate": 4.5511744966442957e-05,
674
+ "loss": 1.8448,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.75,
679
+ "learning_rate": 4.546979865771812e-05,
680
+ "loss": 1.7959,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.75,
685
+ "learning_rate": 4.542785234899329e-05,
686
+ "loss": 1.8464,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.76,
691
+ "learning_rate": 4.538590604026846e-05,
692
+ "loss": 1.8974,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.77,
697
+ "learning_rate": 4.534395973154363e-05,
698
+ "loss": 1.8465,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.77,
703
+ "learning_rate": 4.530201342281879e-05,
704
+ "loss": 1.8479,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.78,
709
+ "learning_rate": 4.526006711409396e-05,
710
+ "loss": 1.8569,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.79,
715
+ "learning_rate": 4.521812080536913e-05,
716
+ "loss": 1.8481,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.79,
721
+ "learning_rate": 4.5176174496644296e-05,
722
+ "loss": 1.8177,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.8,
727
+ "learning_rate": 4.5134228187919466e-05,
728
+ "loss": 1.8628,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.81,
733
+ "learning_rate": 4.509228187919463e-05,
734
+ "loss": 1.8455,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.81,
739
+ "learning_rate": 4.50503355704698e-05,
740
+ "loss": 1.8556,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.82,
745
+ "learning_rate": 4.500838926174497e-05,
746
+ "loss": 1.7393,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.83,
751
+ "learning_rate": 4.496644295302014e-05,
752
+ "loss": 1.8481,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.83,
757
+ "learning_rate": 4.49244966442953e-05,
758
+ "loss": 1.8426,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.84,
763
+ "learning_rate": 4.488255033557047e-05,
764
+ "loss": 1.8246,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.85,
769
+ "learning_rate": 4.484060402684564e-05,
770
+ "loss": 1.8377,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.85,
775
+ "learning_rate": 4.4798657718120805e-05,
776
+ "loss": 1.7963,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.86,
781
+ "learning_rate": 4.4756711409395975e-05,
782
+ "loss": 1.8088,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.87,
787
+ "learning_rate": 4.471476510067114e-05,
788
+ "loss": 1.8482,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.87,
793
+ "learning_rate": 4.467281879194631e-05,
794
+ "loss": 1.8094,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.88,
799
+ "learning_rate": 4.463087248322148e-05,
800
+ "loss": 1.8875,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.89,
805
+ "learning_rate": 4.458892617449665e-05,
806
+ "loss": 1.7656,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.89,
811
+ "learning_rate": 4.454697986577182e-05,
812
+ "loss": 1.8591,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.9,
817
+ "learning_rate": 4.450503355704698e-05,
818
+ "loss": 1.8469,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.91,
823
+ "learning_rate": 4.446308724832215e-05,
824
+ "loss": 1.7949,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.91,
829
+ "learning_rate": 4.4421140939597314e-05,
830
+ "loss": 1.8503,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.92,
835
+ "learning_rate": 4.4379194630872484e-05,
836
+ "loss": 1.7922,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.93,
841
+ "learning_rate": 4.4337248322147654e-05,
842
+ "loss": 1.8318,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.93,
847
+ "learning_rate": 4.4295302013422824e-05,
848
+ "loss": 1.8904,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.94,
853
+ "learning_rate": 4.4253355704697994e-05,
854
+ "loss": 1.7657,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.95,
859
+ "learning_rate": 4.421140939597316e-05,
860
+ "loss": 1.8428,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.95,
865
+ "learning_rate": 4.416946308724833e-05,
866
+ "loss": 1.8724,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.96,
871
+ "learning_rate": 4.412751677852349e-05,
872
+ "loss": 1.8586,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.97,
877
+ "learning_rate": 4.408557046979866e-05,
878
+ "loss": 1.8459,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.97,
883
+ "learning_rate": 4.4043624161073823e-05,
884
+ "loss": 1.8466,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.98,
889
+ "learning_rate": 4.4001677852348993e-05,
890
+ "loss": 1.8361,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.99,
895
+ "learning_rate": 4.395973154362416e-05,
896
+ "loss": 1.7921,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.99,
901
+ "learning_rate": 4.391778523489933e-05,
902
+ "loss": 1.821,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 1.0,
907
+ "learning_rate": 4.38758389261745e-05,
908
+ "loss": 1.6893,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 1.01,
913
+ "learning_rate": 4.3833892617449666e-05,
914
+ "loss": 1.1744,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 1.02,
919
+ "learning_rate": 4.3791946308724836e-05,
920
+ "loss": 1.1708,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 1.02,
925
+ "learning_rate": 4.375e-05,
926
+ "loss": 1.0879,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 1.03,
931
+ "learning_rate": 4.370805369127517e-05,
932
+ "loss": 1.1454,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 1.04,
937
+ "learning_rate": 4.366610738255034e-05,
938
+ "loss": 1.0553,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 1.04,
943
+ "learning_rate": 4.36241610738255e-05,
944
+ "loss": 1.0153,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 1.05,
949
+ "learning_rate": 4.358221476510067e-05,
950
+ "loss": 1.0504,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 1.06,
955
+ "learning_rate": 4.354026845637584e-05,
956
+ "loss": 1.0519,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 1.06,
961
+ "learning_rate": 4.349832214765101e-05,
962
+ "loss": 1.029,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 1.07,
967
+ "learning_rate": 4.3456375838926176e-05,
968
+ "loss": 1.0393,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 1.08,
973
+ "learning_rate": 4.3414429530201346e-05,
974
+ "loss": 1.0251,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 1.08,
979
+ "learning_rate": 4.337248322147651e-05,
980
+ "loss": 1.0165,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 1.09,
985
+ "learning_rate": 4.333053691275168e-05,
986
+ "loss": 1.1326,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 1.1,
991
+ "learning_rate": 4.328859060402685e-05,
992
+ "loss": 1.0326,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 1.1,
997
+ "learning_rate": 4.324664429530201e-05,
998
+ "loss": 1.0497,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 1.11,
1003
+ "learning_rate": 4.320469798657718e-05,
1004
+ "loss": 0.9533,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 1.12,
1009
+ "learning_rate": 4.316275167785235e-05,
1010
+ "loss": 1.039,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 1.12,
1015
+ "learning_rate": 4.312080536912752e-05,
1016
+ "loss": 1.1064,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 1.13,
1021
+ "learning_rate": 4.3078859060402685e-05,
1022
+ "loss": 1.0939,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 1.14,
1027
+ "learning_rate": 4.3036912751677855e-05,
1028
+ "loss": 1.0078,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 1.14,
1033
+ "learning_rate": 4.2994966442953025e-05,
1034
+ "loss": 1.0189,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 1.15,
1039
+ "learning_rate": 4.295302013422819e-05,
1040
+ "loss": 0.9982,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 1.16,
1045
+ "learning_rate": 4.291107382550336e-05,
1046
+ "loss": 0.9927,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 1.16,
1051
+ "learning_rate": 4.286912751677852e-05,
1052
+ "loss": 0.9942,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 1.17,
1057
+ "learning_rate": 4.28271812080537e-05,
1058
+ "loss": 1.0255,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 1.18,
1063
+ "learning_rate": 4.278523489932886e-05,
1064
+ "loss": 1.0477,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 1.18,
1069
+ "learning_rate": 4.274328859060403e-05,
1070
+ "loss": 0.952,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 1.19,
1075
+ "learning_rate": 4.27013422818792e-05,
1076
+ "loss": 1.01,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 1.2,
1081
+ "learning_rate": 4.2659395973154364e-05,
1082
+ "loss": 1.0382,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 1.2,
1087
+ "learning_rate": 4.2617449664429534e-05,
1088
+ "loss": 1.0118,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 1.21,
1093
+ "learning_rate": 4.25755033557047e-05,
1094
+ "loss": 1.0751,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 1.22,
1099
+ "learning_rate": 4.253355704697987e-05,
1100
+ "loss": 1.006,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 1.22,
1105
+ "learning_rate": 4.249161073825503e-05,
1106
+ "loss": 1.0463,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 1.23,
1111
+ "learning_rate": 4.244966442953021e-05,
1112
+ "loss": 1.0699,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 1.24,
1117
+ "learning_rate": 4.240771812080537e-05,
1118
+ "loss": 1.0076,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 1.24,
1123
+ "learning_rate": 4.236577181208054e-05,
1124
+ "loss": 0.9696,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 1.25,
1129
+ "learning_rate": 4.232382550335571e-05,
1130
+ "loss": 0.9489,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 1.26,
1135
+ "learning_rate": 4.228187919463087e-05,
1136
+ "loss": 0.9653,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 1.26,
1141
+ "learning_rate": 4.223993288590604e-05,
1142
+ "loss": 1.1345,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 1.27,
1147
+ "learning_rate": 4.2197986577181206e-05,
1148
+ "loss": 1.0358,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 1.28,
1153
+ "learning_rate": 4.2156040268456376e-05,
1154
+ "loss": 1.0029,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 1.28,
1159
+ "learning_rate": 4.2114093959731546e-05,
1160
+ "loss": 0.9662,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 1.29,
1165
+ "learning_rate": 4.2072147651006716e-05,
1166
+ "loss": 0.9887,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 1.3,
1171
+ "learning_rate": 4.2030201342281886e-05,
1172
+ "loss": 0.9726,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 1.3,
1177
+ "learning_rate": 4.198825503355705e-05,
1178
+ "loss": 1.064,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 1.31,
1183
+ "learning_rate": 4.194630872483222e-05,
1184
+ "loss": 1.0207,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 1.32,
1189
+ "learning_rate": 4.190436241610738e-05,
1190
+ "loss": 1.0091,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 1.32,
1195
+ "learning_rate": 4.186241610738255e-05,
1196
+ "loss": 1.0282,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 1.33,
1201
+ "learning_rate": 4.1820469798657716e-05,
1202
+ "loss": 1.0127,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 1.34,
1207
+ "learning_rate": 4.1778523489932886e-05,
1208
+ "loss": 1.0243,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 1.34,
1213
+ "learning_rate": 4.1736577181208055e-05,
1214
+ "loss": 1.0646,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 1.35,
1219
+ "learning_rate": 4.1694630872483225e-05,
1220
+ "loss": 0.9856,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 1.36,
1225
+ "learning_rate": 4.1652684563758395e-05,
1226
+ "loss": 1.0238,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 1.36,
1231
+ "learning_rate": 4.161073825503356e-05,
1232
+ "loss": 1.09,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 1.37,
1237
+ "learning_rate": 4.156879194630873e-05,
1238
+ "loss": 0.9666,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 1.38,
1243
+ "learning_rate": 4.152684563758389e-05,
1244
+ "loss": 1.0156,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 1.38,
1249
+ "learning_rate": 4.148489932885906e-05,
1250
+ "loss": 1.0441,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 1.39,
1255
+ "learning_rate": 4.144295302013423e-05,
1256
+ "loss": 1.1158,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 1.4,
1261
+ "learning_rate": 4.1401006711409395e-05,
1262
+ "loss": 1.1311,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 1.4,
1267
+ "learning_rate": 4.135906040268457e-05,
1268
+ "loss": 1.1143,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 1.41,
1273
+ "learning_rate": 4.1317114093959735e-05,
1274
+ "loss": 1.0636,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 1.42,
1279
+ "learning_rate": 4.1275167785234905e-05,
1280
+ "loss": 1.0763,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 1.42,
1285
+ "learning_rate": 4.123322147651007e-05,
1286
+ "loss": 0.94,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 1.43,
1291
+ "learning_rate": 4.119127516778524e-05,
1292
+ "loss": 1.0561,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 1.44,
1297
+ "learning_rate": 4.11493288590604e-05,
1298
+ "loss": 1.0693,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 1.44,
1303
+ "learning_rate": 4.110738255033557e-05,
1304
+ "loss": 1.1091,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 1.45,
1309
+ "learning_rate": 4.106543624161074e-05,
1310
+ "loss": 0.9472,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 1.46,
1315
+ "learning_rate": 4.1023489932885904e-05,
1316
+ "loss": 1.0918,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 1.46,
1321
+ "learning_rate": 4.098154362416108e-05,
1322
+ "loss": 1.135,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 1.47,
1327
+ "learning_rate": 4.0939597315436244e-05,
1328
+ "loss": 1.215,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 1.48,
1333
+ "learning_rate": 4.0897651006711414e-05,
1334
+ "loss": 1.0823,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 1.48,
1339
+ "learning_rate": 4.085570469798658e-05,
1340
+ "loss": 1.0458,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 1.49,
1345
+ "learning_rate": 4.081375838926175e-05,
1346
+ "loss": 1.0106,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 1.5,
1351
+ "learning_rate": 4.077181208053692e-05,
1352
+ "loss": 1.0731,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 1.5,
1357
+ "learning_rate": 4.072986577181208e-05,
1358
+ "loss": 1.0038,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 1.51,
1363
+ "learning_rate": 4.068791946308725e-05,
1364
+ "loss": 0.9899,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 1.52,
1369
+ "learning_rate": 4.064597315436241e-05,
1370
+ "loss": 1.0594,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 1.52,
1375
+ "learning_rate": 4.060402684563759e-05,
1376
+ "loss": 1.0711,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 1.53,
1381
+ "learning_rate": 4.056208053691275e-05,
1382
+ "loss": 1.0418,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 1.54,
1387
+ "learning_rate": 4.052013422818792e-05,
1388
+ "loss": 1.126,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 1.54,
1393
+ "learning_rate": 4.047818791946309e-05,
1394
+ "loss": 0.9917,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 1.55,
1399
+ "learning_rate": 4.0436241610738256e-05,
1400
+ "loss": 1.0509,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 1.56,
1405
+ "learning_rate": 4.0394295302013426e-05,
1406
+ "loss": 1.0557,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 1.56,
1411
+ "learning_rate": 4.035234899328859e-05,
1412
+ "loss": 1.0436,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 1.57,
1417
+ "learning_rate": 4.031040268456376e-05,
1418
+ "loss": 0.9919,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 1.58,
1423
+ "learning_rate": 4.026845637583892e-05,
1424
+ "loss": 1.0404,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 1.58,
1429
+ "learning_rate": 4.02265100671141e-05,
1430
+ "loss": 0.9761,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 1.59,
1435
+ "learning_rate": 4.018456375838926e-05,
1436
+ "loss": 1.0817,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 1.6,
1441
+ "learning_rate": 4.014261744966443e-05,
1442
+ "loss": 1.0359,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 1.6,
1447
+ "learning_rate": 4.01006711409396e-05,
1448
+ "loss": 1.1567,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 1.61,
1453
+ "learning_rate": 4.0058724832214765e-05,
1454
+ "loss": 1.1174,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 1.62,
1459
+ "learning_rate": 4.0016778523489935e-05,
1460
+ "loss": 1.0707,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 1.62,
1465
+ "learning_rate": 3.99748322147651e-05,
1466
+ "loss": 1.0341,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 1.63,
1471
+ "learning_rate": 3.993288590604027e-05,
1472
+ "loss": 1.0668,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 1.64,
1477
+ "learning_rate": 3.989093959731544e-05,
1478
+ "loss": 1.1055,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 1.64,
1483
+ "learning_rate": 3.984899328859061e-05,
1484
+ "loss": 0.9733,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 1.65,
1489
+ "learning_rate": 3.980704697986578e-05,
1490
+ "loss": 1.0354,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 1.66,
1495
+ "learning_rate": 3.976510067114094e-05,
1496
+ "loss": 1.0075,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 1.66,
1501
+ "learning_rate": 3.972315436241611e-05,
1502
+ "loss": 1.0697,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 1.67,
1507
+ "learning_rate": 3.9681208053691275e-05,
1508
+ "loss": 1.0748,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 1.68,
1513
+ "learning_rate": 3.9639261744966445e-05,
1514
+ "loss": 1.0527,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 1.68,
1519
+ "learning_rate": 3.959731543624161e-05,
1520
+ "loss": 1.0426,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 1.69,
1525
+ "learning_rate": 3.955536912751678e-05,
1526
+ "loss": 0.9371,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 1.7,
1531
+ "learning_rate": 3.951342281879195e-05,
1532
+ "loss": 1.0303,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 1.7,
1537
+ "learning_rate": 3.947147651006712e-05,
1538
+ "loss": 1.0596,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 1.71,
1543
+ "learning_rate": 3.942953020134229e-05,
1544
+ "loss": 1.1421,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 1.72,
1549
+ "learning_rate": 3.938758389261745e-05,
1550
+ "loss": 1.0909,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 1.72,
1555
+ "learning_rate": 3.934563758389262e-05,
1556
+ "loss": 1.0902,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 1.73,
1561
+ "learning_rate": 3.9303691275167784e-05,
1562
+ "loss": 1.1381,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 1.74,
1567
+ "learning_rate": 3.9261744966442954e-05,
1568
+ "loss": 1.1158,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 1.74,
1573
+ "learning_rate": 3.9219798657718124e-05,
1574
+ "loss": 1.0368,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 1.75,
1579
+ "learning_rate": 3.917785234899329e-05,
1580
+ "loss": 1.0452,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 1.76,
1585
+ "learning_rate": 3.9135906040268464e-05,
1586
+ "loss": 1.1253,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 1.76,
1591
+ "learning_rate": 3.909395973154363e-05,
1592
+ "loss": 1.066,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 1.77,
1597
+ "learning_rate": 3.90520134228188e-05,
1598
+ "loss": 0.997,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 1.78,
1603
+ "learning_rate": 3.901006711409396e-05,
1604
+ "loss": 1.168,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 1.78,
1609
+ "learning_rate": 3.896812080536913e-05,
1610
+ "loss": 1.0828,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 1.79,
1615
+ "learning_rate": 3.89261744966443e-05,
1616
+ "loss": 0.9894,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 1.8,
1621
+ "learning_rate": 3.888422818791946e-05,
1622
+ "loss": 1.0228,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 1.8,
1627
+ "learning_rate": 3.884228187919463e-05,
1628
+ "loss": 1.0008,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 1.81,
1633
+ "learning_rate": 3.8800335570469796e-05,
1634
+ "loss": 1.1658,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 1.82,
1639
+ "learning_rate": 3.875838926174497e-05,
1640
+ "loss": 1.0294,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 1.82,
1645
+ "learning_rate": 3.8716442953020136e-05,
1646
+ "loss": 1.0961,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 1.83,
1651
+ "learning_rate": 3.8674496644295306e-05,
1652
+ "loss": 1.056,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 1.84,
1657
+ "learning_rate": 3.863255033557047e-05,
1658
+ "loss": 1.1555,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 1.84,
1663
+ "learning_rate": 3.859060402684564e-05,
1664
+ "loss": 1.0154,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 1.85,
1669
+ "learning_rate": 3.854865771812081e-05,
1670
+ "loss": 1.1223,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 1.86,
1675
+ "learning_rate": 3.850671140939597e-05,
1676
+ "loss": 1.024,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 1.86,
1681
+ "learning_rate": 3.846476510067114e-05,
1682
+ "loss": 1.1126,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 1.87,
1687
+ "learning_rate": 3.8422818791946305e-05,
1688
+ "loss": 1.0596,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 1.88,
1693
+ "learning_rate": 3.838087248322148e-05,
1694
+ "loss": 0.9871,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 1.88,
1699
+ "learning_rate": 3.8338926174496645e-05,
1700
+ "loss": 1.0154,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 1.89,
1705
+ "learning_rate": 3.8296979865771815e-05,
1706
+ "loss": 1.0347,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 1.9,
1711
+ "learning_rate": 3.8255033557046985e-05,
1712
+ "loss": 1.0645,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 1.9,
1717
+ "learning_rate": 3.821308724832215e-05,
1718
+ "loss": 1.1103,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 1.91,
1723
+ "learning_rate": 3.817114093959732e-05,
1724
+ "loss": 1.0555,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 1.92,
1729
+ "learning_rate": 3.812919463087248e-05,
1730
+ "loss": 1.0087,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 1.92,
1735
+ "learning_rate": 3.808724832214765e-05,
1736
+ "loss": 1.0094,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 1.93,
1741
+ "learning_rate": 3.804530201342282e-05,
1742
+ "loss": 1.0472,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 1.94,
1747
+ "learning_rate": 3.800335570469799e-05,
1748
+ "loss": 1.0593,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 1.94,
1753
+ "learning_rate": 3.7961409395973154e-05,
1754
+ "loss": 0.9796,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 1.95,
1759
+ "learning_rate": 3.7919463087248324e-05,
1760
+ "loss": 1.095,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 1.96,
1765
+ "learning_rate": 3.7877516778523494e-05,
1766
+ "loss": 1.1117,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 1.96,
1771
+ "learning_rate": 3.783557046979866e-05,
1772
+ "loss": 1.0029,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 1.97,
1777
+ "learning_rate": 3.779362416107383e-05,
1778
+ "loss": 1.0608,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 1.98,
1783
+ "learning_rate": 3.775167785234899e-05,
1784
+ "loss": 0.9456,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 1.98,
1789
+ "learning_rate": 3.770973154362416e-05,
1790
+ "loss": 1.0542,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 1.99,
1795
+ "learning_rate": 3.766778523489933e-05,
1796
+ "loss": 1.1852,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 2.0,
1801
+ "learning_rate": 3.76258389261745e-05,
1802
+ "loss": 1.1161,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 2.0,
1807
+ "learning_rate": 3.758389261744967e-05,
1808
+ "loss": 0.6874,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 2.01,
1813
+ "learning_rate": 3.7541946308724834e-05,
1814
+ "loss": 0.2995,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 2.02,
1819
+ "learning_rate": 3.7500000000000003e-05,
1820
+ "loss": 0.3496,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 2.02,
1825
+ "learning_rate": 3.745805369127517e-05,
1826
+ "loss": 0.3164,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 2.03,
1831
+ "learning_rate": 3.741610738255034e-05,
1832
+ "loss": 0.3035,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 2.04,
1837
+ "learning_rate": 3.7374161073825507e-05,
1838
+ "loss": 0.2868,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 2.04,
1843
+ "learning_rate": 3.733221476510067e-05,
1844
+ "loss": 0.3521,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 2.05,
1849
+ "learning_rate": 3.7290268456375846e-05,
1850
+ "loss": 0.3126,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 2.06,
1855
+ "learning_rate": 3.724832214765101e-05,
1856
+ "loss": 0.3399,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 2.06,
1861
+ "learning_rate": 3.720637583892618e-05,
1862
+ "loss": 0.2909,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 2.07,
1867
+ "learning_rate": 3.716442953020134e-05,
1868
+ "loss": 0.3073,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 2.08,
1873
+ "learning_rate": 3.712248322147651e-05,
1874
+ "loss": 0.2761,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 2.08,
1879
+ "learning_rate": 3.7080536912751676e-05,
1880
+ "loss": 0.3051,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 2.09,
1885
+ "learning_rate": 3.7038590604026846e-05,
1886
+ "loss": 0.3028,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 2.1,
1891
+ "learning_rate": 3.6996644295302016e-05,
1892
+ "loss": 0.2823,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 2.1,
1897
+ "learning_rate": 3.695469798657718e-05,
1898
+ "loss": 0.2829,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 2.11,
1903
+ "learning_rate": 3.6912751677852356e-05,
1904
+ "loss": 0.2801,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 2.12,
1909
+ "learning_rate": 3.687080536912752e-05,
1910
+ "loss": 0.3159,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 2.12,
1915
+ "learning_rate": 3.682885906040269e-05,
1916
+ "loss": 0.3164,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 2.13,
1921
+ "learning_rate": 3.678691275167785e-05,
1922
+ "loss": 0.2789,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 2.14,
1927
+ "learning_rate": 3.674496644295302e-05,
1928
+ "loss": 0.3364,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 2.14,
1933
+ "learning_rate": 3.670302013422819e-05,
1934
+ "loss": 0.3064,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 2.15,
1939
+ "learning_rate": 3.6661073825503355e-05,
1940
+ "loss": 0.3183,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 2.16,
1945
+ "learning_rate": 3.6619127516778525e-05,
1946
+ "loss": 0.3108,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 2.16,
1951
+ "learning_rate": 3.6577181208053695e-05,
1952
+ "loss": 0.2877,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 2.17,
1957
+ "learning_rate": 3.6535234899328865e-05,
1958
+ "loss": 0.2948,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 2.18,
1963
+ "learning_rate": 3.649328859060403e-05,
1964
+ "loss": 0.3345,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 2.18,
1969
+ "learning_rate": 3.64513422818792e-05,
1970
+ "loss": 0.3397,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 2.19,
1975
+ "learning_rate": 3.640939597315436e-05,
1976
+ "loss": 0.2967,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 2.2,
1981
+ "learning_rate": 3.636744966442953e-05,
1982
+ "loss": 0.2848,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 2.2,
1987
+ "learning_rate": 3.63255033557047e-05,
1988
+ "loss": 0.3183,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 2.21,
1993
+ "learning_rate": 3.6283557046979864e-05,
1994
+ "loss": 0.3042,
1995
+ "step": 331
1996
+ },
1997
+ {
1998
+ "epoch": 2.22,
1999
+ "learning_rate": 3.6241610738255034e-05,
2000
+ "loss": 0.3128,
2001
+ "step": 332
2002
+ },
2003
+ {
2004
+ "epoch": 2.22,
2005
+ "learning_rate": 3.6199664429530204e-05,
2006
+ "loss": 0.3144,
2007
+ "step": 333
2008
+ },
2009
+ {
2010
+ "epoch": 2.23,
2011
+ "learning_rate": 3.6157718120805374e-05,
2012
+ "loss": 0.288,
2013
+ "step": 334
2014
+ },
2015
+ {
2016
+ "epoch": 2.24,
2017
+ "learning_rate": 3.611577181208054e-05,
2018
+ "loss": 0.305,
2019
+ "step": 335
2020
+ },
2021
+ {
2022
+ "epoch": 2.24,
2023
+ "learning_rate": 3.607382550335571e-05,
2024
+ "loss": 0.3115,
2025
+ "step": 336
2026
+ },
2027
+ {
2028
+ "epoch": 2.25,
2029
+ "learning_rate": 3.603187919463088e-05,
2030
+ "loss": 0.3321,
2031
+ "step": 337
2032
+ },
2033
+ {
2034
+ "epoch": 2.26,
2035
+ "learning_rate": 3.598993288590604e-05,
2036
+ "loss": 0.2799,
2037
+ "step": 338
2038
+ },
2039
+ {
2040
+ "epoch": 2.26,
2041
+ "learning_rate": 3.594798657718121e-05,
2042
+ "loss": 0.2965,
2043
+ "step": 339
2044
+ },
2045
+ {
2046
+ "epoch": 2.27,
2047
+ "learning_rate": 3.5906040268456373e-05,
2048
+ "loss": 0.3046,
2049
+ "step": 340
2050
+ },
2051
+ {
2052
+ "epoch": 2.28,
2053
+ "learning_rate": 3.5864093959731543e-05,
2054
+ "loss": 0.2886,
2055
+ "step": 341
2056
+ },
2057
+ {
2058
+ "epoch": 2.28,
2059
+ "learning_rate": 3.582214765100671e-05,
2060
+ "loss": 0.3059,
2061
+ "step": 342
2062
+ },
2063
+ {
2064
+ "epoch": 2.29,
2065
+ "learning_rate": 3.578020134228188e-05,
2066
+ "loss": 0.3201,
2067
+ "step": 343
2068
+ },
2069
+ {
2070
+ "epoch": 2.3,
2071
+ "learning_rate": 3.5738255033557046e-05,
2072
+ "loss": 0.2766,
2073
+ "step": 344
2074
+ },
2075
+ {
2076
+ "epoch": 2.3,
2077
+ "learning_rate": 3.5696308724832216e-05,
2078
+ "loss": 0.2934,
2079
+ "step": 345
2080
+ },
2081
+ {
2082
+ "epoch": 2.31,
2083
+ "learning_rate": 3.5654362416107386e-05,
2084
+ "loss": 0.2731,
2085
+ "step": 346
2086
+ },
2087
+ {
2088
+ "epoch": 2.32,
2089
+ "learning_rate": 3.561241610738255e-05,
2090
+ "loss": 0.2676,
2091
+ "step": 347
2092
+ },
2093
+ {
2094
+ "epoch": 2.32,
2095
+ "learning_rate": 3.557046979865772e-05,
2096
+ "loss": 0.2982,
2097
+ "step": 348
2098
+ },
2099
+ {
2100
+ "epoch": 2.33,
2101
+ "learning_rate": 3.552852348993288e-05,
2102
+ "loss": 0.2929,
2103
+ "step": 349
2104
+ },
2105
+ {
2106
+ "epoch": 2.34,
2107
+ "learning_rate": 3.548657718120805e-05,
2108
+ "loss": 0.2891,
2109
+ "step": 350
2110
+ },
2111
+ {
2112
+ "epoch": 2.34,
2113
+ "learning_rate": 3.544463087248322e-05,
2114
+ "loss": 0.2792,
2115
+ "step": 351
2116
+ },
2117
+ {
2118
+ "epoch": 2.35,
2119
+ "learning_rate": 3.540268456375839e-05,
2120
+ "loss": 0.328,
2121
+ "step": 352
2122
+ },
2123
+ {
2124
+ "epoch": 2.36,
2125
+ "learning_rate": 3.536073825503356e-05,
2126
+ "loss": 0.2943,
2127
+ "step": 353
2128
+ },
2129
+ {
2130
+ "epoch": 2.36,
2131
+ "learning_rate": 3.5318791946308726e-05,
2132
+ "loss": 0.2564,
2133
+ "step": 354
2134
+ },
2135
+ {
2136
+ "epoch": 2.37,
2137
+ "learning_rate": 3.5276845637583896e-05,
2138
+ "loss": 0.2757,
2139
+ "step": 355
2140
+ },
2141
+ {
2142
+ "epoch": 2.38,
2143
+ "learning_rate": 3.523489932885906e-05,
2144
+ "loss": 0.3344,
2145
+ "step": 356
2146
+ },
2147
+ {
2148
+ "epoch": 2.38,
2149
+ "learning_rate": 3.519295302013423e-05,
2150
+ "loss": 0.2906,
2151
+ "step": 357
2152
+ },
2153
+ {
2154
+ "epoch": 2.39,
2155
+ "learning_rate": 3.51510067114094e-05,
2156
+ "loss": 0.2798,
2157
+ "step": 358
2158
+ },
2159
+ {
2160
+ "epoch": 2.4,
2161
+ "learning_rate": 3.510906040268457e-05,
2162
+ "loss": 0.2937,
2163
+ "step": 359
2164
+ },
2165
+ {
2166
+ "epoch": 2.4,
2167
+ "learning_rate": 3.506711409395974e-05,
2168
+ "loss": 0.2893,
2169
+ "step": 360
2170
+ },
2171
+ {
2172
+ "epoch": 2.41,
2173
+ "learning_rate": 3.50251677852349e-05,
2174
+ "loss": 0.299,
2175
+ "step": 361
2176
+ },
2177
+ {
2178
+ "epoch": 2.42,
2179
+ "learning_rate": 3.498322147651007e-05,
2180
+ "loss": 0.3113,
2181
+ "step": 362
2182
+ },
2183
+ {
2184
+ "epoch": 2.42,
2185
+ "learning_rate": 3.4941275167785235e-05,
2186
+ "loss": 0.3086,
2187
+ "step": 363
2188
+ },
2189
+ {
2190
+ "epoch": 2.43,
2191
+ "learning_rate": 3.4899328859060405e-05,
2192
+ "loss": 0.3392,
2193
+ "step": 364
2194
+ },
2195
+ {
2196
+ "epoch": 2.44,
2197
+ "learning_rate": 3.485738255033557e-05,
2198
+ "loss": 0.2652,
2199
+ "step": 365
2200
+ },
2201
+ {
2202
+ "epoch": 2.44,
2203
+ "learning_rate": 3.481543624161074e-05,
2204
+ "loss": 0.2882,
2205
+ "step": 366
2206
+ },
2207
+ {
2208
+ "epoch": 2.45,
2209
+ "learning_rate": 3.477348993288591e-05,
2210
+ "loss": 0.2948,
2211
+ "step": 367
2212
+ },
2213
+ {
2214
+ "epoch": 2.46,
2215
+ "learning_rate": 3.473154362416108e-05,
2216
+ "loss": 0.2739,
2217
+ "step": 368
2218
+ },
2219
+ {
2220
+ "epoch": 2.46,
2221
+ "learning_rate": 3.468959731543625e-05,
2222
+ "loss": 0.2882,
2223
+ "step": 369
2224
+ },
2225
+ {
2226
+ "epoch": 2.47,
2227
+ "learning_rate": 3.464765100671141e-05,
2228
+ "loss": 0.3521,
2229
+ "step": 370
2230
+ },
2231
+ {
2232
+ "epoch": 2.48,
2233
+ "learning_rate": 3.460570469798658e-05,
2234
+ "loss": 0.2963,
2235
+ "step": 371
2236
+ },
2237
+ {
2238
+ "epoch": 2.48,
2239
+ "learning_rate": 3.4563758389261744e-05,
2240
+ "loss": 0.2624,
2241
+ "step": 372
2242
+ },
2243
+ {
2244
+ "epoch": 2.49,
2245
+ "learning_rate": 3.4521812080536914e-05,
2246
+ "loss": 0.2858,
2247
+ "step": 373
2248
+ },
2249
+ {
2250
+ "epoch": 2.5,
2251
+ "learning_rate": 3.4479865771812084e-05,
2252
+ "loss": 0.3327,
2253
+ "step": 374
2254
+ },
2255
+ {
2256
+ "epoch": 2.5,
2257
+ "learning_rate": 3.443791946308725e-05,
2258
+ "loss": 0.3024,
2259
+ "step": 375
2260
+ },
2261
+ {
2262
+ "epoch": 2.51,
2263
+ "learning_rate": 3.439597315436242e-05,
2264
+ "loss": 0.308,
2265
+ "step": 376
2266
+ },
2267
+ {
2268
+ "epoch": 2.52,
2269
+ "learning_rate": 3.435402684563759e-05,
2270
+ "loss": 0.2932,
2271
+ "step": 377
2272
+ },
2273
+ {
2274
+ "epoch": 2.52,
2275
+ "learning_rate": 3.431208053691276e-05,
2276
+ "loss": 0.324,
2277
+ "step": 378
2278
+ },
2279
+ {
2280
+ "epoch": 2.53,
2281
+ "learning_rate": 3.427013422818792e-05,
2282
+ "loss": 0.325,
2283
+ "step": 379
2284
+ },
2285
+ {
2286
+ "epoch": 2.54,
2287
+ "learning_rate": 3.422818791946309e-05,
2288
+ "loss": 0.3378,
2289
+ "step": 380
2290
+ },
2291
+ {
2292
+ "epoch": 2.54,
2293
+ "learning_rate": 3.418624161073825e-05,
2294
+ "loss": 0.3061,
2295
+ "step": 381
2296
+ },
2297
+ {
2298
+ "epoch": 2.55,
2299
+ "learning_rate": 3.414429530201342e-05,
2300
+ "loss": 0.2856,
2301
+ "step": 382
2302
+ },
2303
+ {
2304
+ "epoch": 2.56,
2305
+ "learning_rate": 3.410234899328859e-05,
2306
+ "loss": 0.3567,
2307
+ "step": 383
2308
+ },
2309
+ {
2310
+ "epoch": 2.56,
2311
+ "learning_rate": 3.4060402684563756e-05,
2312
+ "loss": 0.3063,
2313
+ "step": 384
2314
+ },
2315
+ {
2316
+ "epoch": 2.57,
2317
+ "learning_rate": 3.4018456375838926e-05,
2318
+ "loss": 0.2806,
2319
+ "step": 385
2320
+ },
2321
+ {
2322
+ "epoch": 2.58,
2323
+ "learning_rate": 3.3976510067114096e-05,
2324
+ "loss": 0.3239,
2325
+ "step": 386
2326
+ },
2327
+ {
2328
+ "epoch": 2.58,
2329
+ "learning_rate": 3.3934563758389266e-05,
2330
+ "loss": 0.3089,
2331
+ "step": 387
2332
+ },
2333
+ {
2334
+ "epoch": 2.59,
2335
+ "learning_rate": 3.389261744966443e-05,
2336
+ "loss": 0.3388,
2337
+ "step": 388
2338
+ },
2339
+ {
2340
+ "epoch": 2.6,
2341
+ "learning_rate": 3.38506711409396e-05,
2342
+ "loss": 0.2863,
2343
+ "step": 389
2344
+ },
2345
+ {
2346
+ "epoch": 2.6,
2347
+ "learning_rate": 3.380872483221477e-05,
2348
+ "loss": 0.2794,
2349
+ "step": 390
2350
+ },
2351
+ {
2352
+ "epoch": 2.61,
2353
+ "learning_rate": 3.376677852348993e-05,
2354
+ "loss": 0.3331,
2355
+ "step": 391
2356
+ },
2357
+ {
2358
+ "epoch": 2.62,
2359
+ "learning_rate": 3.37248322147651e-05,
2360
+ "loss": 0.3712,
2361
+ "step": 392
2362
+ },
2363
+ {
2364
+ "epoch": 2.62,
2365
+ "learning_rate": 3.3682885906040266e-05,
2366
+ "loss": 0.2779,
2367
+ "step": 393
2368
+ },
2369
+ {
2370
+ "epoch": 2.63,
2371
+ "learning_rate": 3.3640939597315436e-05,
2372
+ "loss": 0.3076,
2373
+ "step": 394
2374
+ },
2375
+ {
2376
+ "epoch": 2.64,
2377
+ "learning_rate": 3.3598993288590605e-05,
2378
+ "loss": 0.3019,
2379
+ "step": 395
2380
+ },
2381
+ {
2382
+ "epoch": 2.64,
2383
+ "learning_rate": 3.3557046979865775e-05,
2384
+ "loss": 0.3249,
2385
+ "step": 396
2386
+ },
2387
+ {
2388
+ "epoch": 2.65,
2389
+ "learning_rate": 3.3515100671140945e-05,
2390
+ "loss": 0.3447,
2391
+ "step": 397
2392
+ },
2393
+ {
2394
+ "epoch": 2.66,
2395
+ "learning_rate": 3.347315436241611e-05,
2396
+ "loss": 0.3528,
2397
+ "step": 398
2398
+ },
2399
+ {
2400
+ "epoch": 2.66,
2401
+ "learning_rate": 3.343120805369128e-05,
2402
+ "loss": 0.3519,
2403
+ "step": 399
2404
+ },
2405
+ {
2406
+ "epoch": 2.67,
2407
+ "learning_rate": 3.338926174496644e-05,
2408
+ "loss": 0.3262,
2409
+ "step": 400
2410
+ },
2411
+ {
2412
+ "epoch": 2.68,
2413
+ "learning_rate": 3.334731543624161e-05,
2414
+ "loss": 0.3264,
2415
+ "step": 401
2416
+ },
2417
+ {
2418
+ "epoch": 2.68,
2419
+ "learning_rate": 3.3305369127516775e-05,
2420
+ "loss": 0.295,
2421
+ "step": 402
2422
+ },
2423
+ {
2424
+ "epoch": 2.69,
2425
+ "learning_rate": 3.326342281879195e-05,
2426
+ "loss": 0.2763,
2427
+ "step": 403
2428
+ },
2429
+ {
2430
+ "epoch": 2.7,
2431
+ "learning_rate": 3.3221476510067115e-05,
2432
+ "loss": 0.2954,
2433
+ "step": 404
2434
+ },
2435
+ {
2436
+ "epoch": 2.7,
2437
+ "learning_rate": 3.3179530201342285e-05,
2438
+ "loss": 0.3035,
2439
+ "step": 405
2440
+ },
2441
+ {
2442
+ "epoch": 2.71,
2443
+ "learning_rate": 3.3137583892617455e-05,
2444
+ "loss": 0.3123,
2445
+ "step": 406
2446
+ },
2447
+ {
2448
+ "epoch": 2.72,
2449
+ "learning_rate": 3.309563758389262e-05,
2450
+ "loss": 0.3183,
2451
+ "step": 407
2452
+ },
2453
+ {
2454
+ "epoch": 2.72,
2455
+ "learning_rate": 3.305369127516779e-05,
2456
+ "loss": 0.3119,
2457
+ "step": 408
2458
+ },
2459
+ {
2460
+ "epoch": 2.73,
2461
+ "learning_rate": 3.301174496644295e-05,
2462
+ "loss": 0.3318,
2463
+ "step": 409
2464
+ },
2465
+ {
2466
+ "epoch": 2.74,
2467
+ "learning_rate": 3.296979865771812e-05,
2468
+ "loss": 0.355,
2469
+ "step": 410
2470
+ },
2471
+ {
2472
+ "epoch": 2.74,
2473
+ "learning_rate": 3.292785234899329e-05,
2474
+ "loss": 0.2798,
2475
+ "step": 411
2476
+ },
2477
+ {
2478
+ "epoch": 2.75,
2479
+ "learning_rate": 3.288590604026846e-05,
2480
+ "loss": 0.3053,
2481
+ "step": 412
2482
+ },
2483
+ {
2484
+ "epoch": 2.76,
2485
+ "learning_rate": 3.284395973154363e-05,
2486
+ "loss": 0.3159,
2487
+ "step": 413
2488
+ },
2489
+ {
2490
+ "epoch": 2.76,
2491
+ "learning_rate": 3.2802013422818794e-05,
2492
+ "loss": 0.2852,
2493
+ "step": 414
2494
+ },
2495
+ {
2496
+ "epoch": 2.77,
2497
+ "learning_rate": 3.2760067114093964e-05,
2498
+ "loss": 0.2801,
2499
+ "step": 415
2500
+ },
2501
+ {
2502
+ "epoch": 2.78,
2503
+ "learning_rate": 3.271812080536913e-05,
2504
+ "loss": 0.2946,
2505
+ "step": 416
2506
+ },
2507
+ {
2508
+ "epoch": 2.78,
2509
+ "learning_rate": 3.26761744966443e-05,
2510
+ "loss": 0.2972,
2511
+ "step": 417
2512
+ },
2513
+ {
2514
+ "epoch": 2.79,
2515
+ "learning_rate": 3.263422818791946e-05,
2516
+ "loss": 0.3313,
2517
+ "step": 418
2518
+ },
2519
+ {
2520
+ "epoch": 2.8,
2521
+ "learning_rate": 3.259228187919463e-05,
2522
+ "loss": 0.3031,
2523
+ "step": 419
2524
+ },
2525
+ {
2526
+ "epoch": 2.8,
2527
+ "learning_rate": 3.25503355704698e-05,
2528
+ "loss": 0.2732,
2529
+ "step": 420
2530
+ },
2531
+ {
2532
+ "epoch": 2.81,
2533
+ "learning_rate": 3.250838926174497e-05,
2534
+ "loss": 0.2799,
2535
+ "step": 421
2536
+ },
2537
+ {
2538
+ "epoch": 2.82,
2539
+ "learning_rate": 3.246644295302014e-05,
2540
+ "loss": 0.3164,
2541
+ "step": 422
2542
+ },
2543
+ {
2544
+ "epoch": 2.82,
2545
+ "learning_rate": 3.24244966442953e-05,
2546
+ "loss": 0.3081,
2547
+ "step": 423
2548
+ },
2549
+ {
2550
+ "epoch": 2.83,
2551
+ "learning_rate": 3.238255033557047e-05,
2552
+ "loss": 0.311,
2553
+ "step": 424
2554
+ },
2555
+ {
2556
+ "epoch": 2.84,
2557
+ "learning_rate": 3.2340604026845636e-05,
2558
+ "loss": 0.2908,
2559
+ "step": 425
2560
+ },
2561
+ {
2562
+ "epoch": 2.84,
2563
+ "learning_rate": 3.2298657718120806e-05,
2564
+ "loss": 0.3139,
2565
+ "step": 426
2566
+ },
2567
+ {
2568
+ "epoch": 2.85,
2569
+ "learning_rate": 3.2256711409395976e-05,
2570
+ "loss": 0.3179,
2571
+ "step": 427
2572
+ },
2573
+ {
2574
+ "epoch": 2.86,
2575
+ "learning_rate": 3.221476510067114e-05,
2576
+ "loss": 0.2754,
2577
+ "step": 428
2578
+ },
2579
+ {
2580
+ "epoch": 2.86,
2581
+ "learning_rate": 3.217281879194631e-05,
2582
+ "loss": 0.2746,
2583
+ "step": 429
2584
+ },
2585
+ {
2586
+ "epoch": 2.87,
2587
+ "learning_rate": 3.213087248322148e-05,
2588
+ "loss": 0.3103,
2589
+ "step": 430
2590
+ },
2591
+ {
2592
+ "epoch": 2.88,
2593
+ "learning_rate": 3.208892617449665e-05,
2594
+ "loss": 0.2891,
2595
+ "step": 431
2596
+ },
2597
+ {
2598
+ "epoch": 2.88,
2599
+ "learning_rate": 3.204697986577181e-05,
2600
+ "loss": 0.3248,
2601
+ "step": 432
2602
+ },
2603
+ {
2604
+ "epoch": 2.89,
2605
+ "learning_rate": 3.200503355704698e-05,
2606
+ "loss": 0.3306,
2607
+ "step": 433
2608
+ },
2609
+ {
2610
+ "epoch": 2.9,
2611
+ "learning_rate": 3.196308724832215e-05,
2612
+ "loss": 0.3585,
2613
+ "step": 434
2614
+ },
2615
+ {
2616
+ "epoch": 2.9,
2617
+ "learning_rate": 3.1921140939597315e-05,
2618
+ "loss": 0.3127,
2619
+ "step": 435
2620
+ },
2621
+ {
2622
+ "epoch": 2.91,
2623
+ "learning_rate": 3.1879194630872485e-05,
2624
+ "loss": 0.2553,
2625
+ "step": 436
2626
+ },
2627
+ {
2628
+ "epoch": 2.92,
2629
+ "learning_rate": 3.183724832214765e-05,
2630
+ "loss": 0.3163,
2631
+ "step": 437
2632
+ },
2633
+ {
2634
+ "epoch": 2.92,
2635
+ "learning_rate": 3.1795302013422825e-05,
2636
+ "loss": 0.2985,
2637
+ "step": 438
2638
+ },
2639
+ {
2640
+ "epoch": 2.93,
2641
+ "learning_rate": 3.175335570469799e-05,
2642
+ "loss": 0.2864,
2643
+ "step": 439
2644
+ },
2645
+ {
2646
+ "epoch": 2.94,
2647
+ "learning_rate": 3.171140939597316e-05,
2648
+ "loss": 0.2892,
2649
+ "step": 440
2650
+ },
2651
+ {
2652
+ "epoch": 2.94,
2653
+ "learning_rate": 3.166946308724832e-05,
2654
+ "loss": 0.2679,
2655
+ "step": 441
2656
+ },
2657
+ {
2658
+ "epoch": 2.95,
2659
+ "learning_rate": 3.162751677852349e-05,
2660
+ "loss": 0.2818,
2661
+ "step": 442
2662
+ },
2663
+ {
2664
+ "epoch": 2.96,
2665
+ "learning_rate": 3.158557046979866e-05,
2666
+ "loss": 0.3748,
2667
+ "step": 443
2668
+ },
2669
+ {
2670
+ "epoch": 2.96,
2671
+ "learning_rate": 3.1543624161073825e-05,
2672
+ "loss": 0.3409,
2673
+ "step": 444
2674
+ },
2675
+ {
2676
+ "epoch": 2.97,
2677
+ "learning_rate": 3.1501677852348995e-05,
2678
+ "loss": 0.2921,
2679
+ "step": 445
2680
+ },
2681
+ {
2682
+ "epoch": 2.98,
2683
+ "learning_rate": 3.145973154362416e-05,
2684
+ "loss": 0.3034,
2685
+ "step": 446
2686
+ },
2687
+ {
2688
+ "epoch": 2.98,
2689
+ "learning_rate": 3.1417785234899334e-05,
2690
+ "loss": 0.3328,
2691
+ "step": 447
2692
+ },
2693
+ {
2694
+ "epoch": 2.99,
2695
+ "learning_rate": 3.13758389261745e-05,
2696
+ "loss": 0.3351,
2697
+ "step": 448
2698
+ },
2699
+ {
2700
+ "epoch": 3.0,
2701
+ "learning_rate": 3.133389261744967e-05,
2702
+ "loss": 0.3032,
2703
+ "step": 449
2704
+ }
2705
+ ],
2706
+ "logging_steps": 1,
2707
+ "max_steps": 1192,
2708
+ "num_train_epochs": 8,
2709
+ "save_steps": 32,
2710
+ "total_flos": 1.1252392353438106e+18,
2711
+ "trial_name": null,
2712
+ "trial_params": null
2713
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e958a56f84f43fcb3a0dd6ceff97b22bbd87dcdac1c403dc3affa48704646e3e
3
+ size 4091