Upload folder using huggingface_hub
Browse files- README.md +50 -0
- config.json +30 -0
- generation_config.json +6 -0
- optimizer.pt +3 -0
- pytorch_model-00001-of-00003.bin +3 -0
- pytorch_model-00002-of-00003.bin +3 -0
- pytorch_model-00003-of-00003.bin +3 -0
- pytorch_model.bin.index.json +531 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +11 -0
- tokenizer.json +0 -0
- tokenizer_config.json +7 -0
- trainer_state.json +2713 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: EleutherAI/polyglot-ko-12.8b
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: gridone-ko-llm-12.8b-v1.1d
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# gridone-ko-llm-12.8b-v1.1d
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [EleutherAI/polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) on an unknown dataset.
|
17 |
+
|
18 |
+
## Model description
|
19 |
+
|
20 |
+
More information needed
|
21 |
+
|
22 |
+
## Intended uses & limitations
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Training and evaluation data
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training procedure
|
31 |
+
|
32 |
+
### Training hyperparameters
|
33 |
+
|
34 |
+
The following hyperparameters were used during training:
|
35 |
+
- learning_rate: 5e-05
|
36 |
+
- train_batch_size: 2
|
37 |
+
- eval_batch_size: 8
|
38 |
+
- seed: 42
|
39 |
+
- gradient_accumulation_steps: 8
|
40 |
+
- total_train_batch_size: 16
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- num_epochs: 8
|
44 |
+
|
45 |
+
### Framework versions
|
46 |
+
|
47 |
+
- Transformers 4.32.0.dev0
|
48 |
+
- Pytorch 2.0.0+cu117
|
49 |
+
- Datasets 2.11.0
|
50 |
+
- Tokenizers 0.13.3
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "EleutherAI/polyglot-ko-12.8b",
|
3 |
+
"architectures": [
|
4 |
+
"GPTNeoXForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": 0.1,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout": 0.0,
|
12 |
+
"hidden_size": 5120,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 20480,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 2048,
|
17 |
+
"model_type": "gpt_neox",
|
18 |
+
"num_attention_heads": 40,
|
19 |
+
"num_hidden_layers": 40,
|
20 |
+
"num_steps": "global_step301000",
|
21 |
+
"rope_scaling": null,
|
22 |
+
"rotary_emb_base": 10000,
|
23 |
+
"rotary_pct": 0.5,
|
24 |
+
"tie_word_embeddings": false,
|
25 |
+
"torch_dtype": "float16",
|
26 |
+
"transformers_version": "4.32.0.dev0",
|
27 |
+
"use_cache": true,
|
28 |
+
"use_parallel_residual": true,
|
29 |
+
"vocab_size": 30080
|
30 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.32.0.dev0"
|
6 |
+
}
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e0fb9bcae2d6d87c41d93ed7644fb4792c73655c348a1528d0edc63a6597bc3
|
3 |
+
size 24400263
|
pytorch_model-00001-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cef5ac08250f925f719e5145cfe42b00f7bd45adb70639259cf59699e122bf71
|
3 |
+
size 9957073034
|
pytorch_model-00002-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:176324a1173af6a4589ad0e14d23dc782d865d797fae87d226bcfdd818f9ca74
|
3 |
+
size 9858779099
|
pytorch_model-00003-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61cdbf74d8266e06d4e9dde0e4614146cef11e8ee2f72df7c69199970cc23957
|
3 |
+
size 5971549140
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,531 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 25787212800
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"embed_out.weight": "pytorch_model-00003-of-00003.bin",
|
7 |
+
"gpt_neox.embed_in.weight": "pytorch_model-00001-of-00003.bin",
|
8 |
+
"gpt_neox.final_layer_norm.bias": "pytorch_model-00003-of-00003.bin",
|
9 |
+
"gpt_neox.final_layer_norm.weight": "pytorch_model-00003-of-00003.bin",
|
10 |
+
"gpt_neox.layers.0.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
11 |
+
"gpt_neox.layers.0.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
12 |
+
"gpt_neox.layers.0.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
13 |
+
"gpt_neox.layers.0.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
14 |
+
"gpt_neox.layers.0.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
15 |
+
"gpt_neox.layers.0.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
16 |
+
"gpt_neox.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
17 |
+
"gpt_neox.layers.0.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
18 |
+
"gpt_neox.layers.0.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
19 |
+
"gpt_neox.layers.0.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
20 |
+
"gpt_neox.layers.0.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
21 |
+
"gpt_neox.layers.0.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
22 |
+
"gpt_neox.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
23 |
+
"gpt_neox.layers.1.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
24 |
+
"gpt_neox.layers.1.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
25 |
+
"gpt_neox.layers.1.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
26 |
+
"gpt_neox.layers.1.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
27 |
+
"gpt_neox.layers.1.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
28 |
+
"gpt_neox.layers.1.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
29 |
+
"gpt_neox.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
30 |
+
"gpt_neox.layers.1.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
31 |
+
"gpt_neox.layers.1.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
32 |
+
"gpt_neox.layers.1.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
33 |
+
"gpt_neox.layers.1.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
34 |
+
"gpt_neox.layers.1.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
35 |
+
"gpt_neox.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
36 |
+
"gpt_neox.layers.10.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
37 |
+
"gpt_neox.layers.10.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
38 |
+
"gpt_neox.layers.10.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
39 |
+
"gpt_neox.layers.10.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
40 |
+
"gpt_neox.layers.10.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
41 |
+
"gpt_neox.layers.10.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
42 |
+
"gpt_neox.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
43 |
+
"gpt_neox.layers.10.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
44 |
+
"gpt_neox.layers.10.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
45 |
+
"gpt_neox.layers.10.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
46 |
+
"gpt_neox.layers.10.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
47 |
+
"gpt_neox.layers.10.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
48 |
+
"gpt_neox.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
49 |
+
"gpt_neox.layers.11.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
50 |
+
"gpt_neox.layers.11.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
51 |
+
"gpt_neox.layers.11.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
52 |
+
"gpt_neox.layers.11.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
53 |
+
"gpt_neox.layers.11.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
54 |
+
"gpt_neox.layers.11.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
55 |
+
"gpt_neox.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
56 |
+
"gpt_neox.layers.11.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
57 |
+
"gpt_neox.layers.11.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
58 |
+
"gpt_neox.layers.11.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
59 |
+
"gpt_neox.layers.11.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
60 |
+
"gpt_neox.layers.11.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
61 |
+
"gpt_neox.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
62 |
+
"gpt_neox.layers.12.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
63 |
+
"gpt_neox.layers.12.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
64 |
+
"gpt_neox.layers.12.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
65 |
+
"gpt_neox.layers.12.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
66 |
+
"gpt_neox.layers.12.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
67 |
+
"gpt_neox.layers.12.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
68 |
+
"gpt_neox.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
69 |
+
"gpt_neox.layers.12.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
70 |
+
"gpt_neox.layers.12.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
71 |
+
"gpt_neox.layers.12.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
72 |
+
"gpt_neox.layers.12.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
73 |
+
"gpt_neox.layers.12.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
74 |
+
"gpt_neox.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
75 |
+
"gpt_neox.layers.13.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
76 |
+
"gpt_neox.layers.13.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
77 |
+
"gpt_neox.layers.13.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
78 |
+
"gpt_neox.layers.13.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
79 |
+
"gpt_neox.layers.13.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
80 |
+
"gpt_neox.layers.13.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
81 |
+
"gpt_neox.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
82 |
+
"gpt_neox.layers.13.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
83 |
+
"gpt_neox.layers.13.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
84 |
+
"gpt_neox.layers.13.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
85 |
+
"gpt_neox.layers.13.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
86 |
+
"gpt_neox.layers.13.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
87 |
+
"gpt_neox.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
88 |
+
"gpt_neox.layers.14.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
89 |
+
"gpt_neox.layers.14.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
90 |
+
"gpt_neox.layers.14.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
91 |
+
"gpt_neox.layers.14.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
92 |
+
"gpt_neox.layers.14.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
93 |
+
"gpt_neox.layers.14.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
94 |
+
"gpt_neox.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
95 |
+
"gpt_neox.layers.14.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
96 |
+
"gpt_neox.layers.14.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
97 |
+
"gpt_neox.layers.14.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
98 |
+
"gpt_neox.layers.14.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
99 |
+
"gpt_neox.layers.14.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
100 |
+
"gpt_neox.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
101 |
+
"gpt_neox.layers.15.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
102 |
+
"gpt_neox.layers.15.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
103 |
+
"gpt_neox.layers.15.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
104 |
+
"gpt_neox.layers.15.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
105 |
+
"gpt_neox.layers.15.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
106 |
+
"gpt_neox.layers.15.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
107 |
+
"gpt_neox.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
108 |
+
"gpt_neox.layers.15.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
109 |
+
"gpt_neox.layers.15.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
110 |
+
"gpt_neox.layers.15.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
111 |
+
"gpt_neox.layers.15.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
112 |
+
"gpt_neox.layers.15.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
113 |
+
"gpt_neox.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
114 |
+
"gpt_neox.layers.16.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
115 |
+
"gpt_neox.layers.16.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
116 |
+
"gpt_neox.layers.16.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
117 |
+
"gpt_neox.layers.16.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
118 |
+
"gpt_neox.layers.16.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
119 |
+
"gpt_neox.layers.16.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
120 |
+
"gpt_neox.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
121 |
+
"gpt_neox.layers.16.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
122 |
+
"gpt_neox.layers.16.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
123 |
+
"gpt_neox.layers.16.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
124 |
+
"gpt_neox.layers.16.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
125 |
+
"gpt_neox.layers.16.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
126 |
+
"gpt_neox.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
127 |
+
"gpt_neox.layers.17.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
128 |
+
"gpt_neox.layers.17.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
129 |
+
"gpt_neox.layers.17.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
130 |
+
"gpt_neox.layers.17.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
131 |
+
"gpt_neox.layers.17.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
132 |
+
"gpt_neox.layers.17.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
133 |
+
"gpt_neox.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
134 |
+
"gpt_neox.layers.17.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
135 |
+
"gpt_neox.layers.17.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
136 |
+
"gpt_neox.layers.17.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
137 |
+
"gpt_neox.layers.17.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
138 |
+
"gpt_neox.layers.17.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
139 |
+
"gpt_neox.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
140 |
+
"gpt_neox.layers.18.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
141 |
+
"gpt_neox.layers.18.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
142 |
+
"gpt_neox.layers.18.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
143 |
+
"gpt_neox.layers.18.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
144 |
+
"gpt_neox.layers.18.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
145 |
+
"gpt_neox.layers.18.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
146 |
+
"gpt_neox.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
147 |
+
"gpt_neox.layers.18.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
148 |
+
"gpt_neox.layers.18.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
149 |
+
"gpt_neox.layers.18.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
150 |
+
"gpt_neox.layers.18.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
151 |
+
"gpt_neox.layers.18.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
152 |
+
"gpt_neox.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
153 |
+
"gpt_neox.layers.19.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
154 |
+
"gpt_neox.layers.19.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
155 |
+
"gpt_neox.layers.19.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
156 |
+
"gpt_neox.layers.19.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
157 |
+
"gpt_neox.layers.19.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
158 |
+
"gpt_neox.layers.19.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
159 |
+
"gpt_neox.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
160 |
+
"gpt_neox.layers.19.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
161 |
+
"gpt_neox.layers.19.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
162 |
+
"gpt_neox.layers.19.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
163 |
+
"gpt_neox.layers.19.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
164 |
+
"gpt_neox.layers.19.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
165 |
+
"gpt_neox.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
166 |
+
"gpt_neox.layers.2.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
167 |
+
"gpt_neox.layers.2.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
168 |
+
"gpt_neox.layers.2.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
169 |
+
"gpt_neox.layers.2.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
170 |
+
"gpt_neox.layers.2.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
171 |
+
"gpt_neox.layers.2.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
172 |
+
"gpt_neox.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
173 |
+
"gpt_neox.layers.2.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
174 |
+
"gpt_neox.layers.2.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
175 |
+
"gpt_neox.layers.2.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
176 |
+
"gpt_neox.layers.2.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
177 |
+
"gpt_neox.layers.2.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
178 |
+
"gpt_neox.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
179 |
+
"gpt_neox.layers.20.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
180 |
+
"gpt_neox.layers.20.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
181 |
+
"gpt_neox.layers.20.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
182 |
+
"gpt_neox.layers.20.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
183 |
+
"gpt_neox.layers.20.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
184 |
+
"gpt_neox.layers.20.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
185 |
+
"gpt_neox.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
186 |
+
"gpt_neox.layers.20.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
187 |
+
"gpt_neox.layers.20.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
188 |
+
"gpt_neox.layers.20.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
189 |
+
"gpt_neox.layers.20.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
190 |
+
"gpt_neox.layers.20.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
191 |
+
"gpt_neox.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
192 |
+
"gpt_neox.layers.21.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
193 |
+
"gpt_neox.layers.21.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
194 |
+
"gpt_neox.layers.21.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
195 |
+
"gpt_neox.layers.21.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
196 |
+
"gpt_neox.layers.21.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
197 |
+
"gpt_neox.layers.21.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
198 |
+
"gpt_neox.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
199 |
+
"gpt_neox.layers.21.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
200 |
+
"gpt_neox.layers.21.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
201 |
+
"gpt_neox.layers.21.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
202 |
+
"gpt_neox.layers.21.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
203 |
+
"gpt_neox.layers.21.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
204 |
+
"gpt_neox.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
205 |
+
"gpt_neox.layers.22.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
206 |
+
"gpt_neox.layers.22.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
207 |
+
"gpt_neox.layers.22.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
208 |
+
"gpt_neox.layers.22.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
209 |
+
"gpt_neox.layers.22.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
210 |
+
"gpt_neox.layers.22.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
211 |
+
"gpt_neox.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
212 |
+
"gpt_neox.layers.22.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
213 |
+
"gpt_neox.layers.22.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
214 |
+
"gpt_neox.layers.22.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
215 |
+
"gpt_neox.layers.22.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
216 |
+
"gpt_neox.layers.22.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
217 |
+
"gpt_neox.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
218 |
+
"gpt_neox.layers.23.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
219 |
+
"gpt_neox.layers.23.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
220 |
+
"gpt_neox.layers.23.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
221 |
+
"gpt_neox.layers.23.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
222 |
+
"gpt_neox.layers.23.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
223 |
+
"gpt_neox.layers.23.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
224 |
+
"gpt_neox.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
225 |
+
"gpt_neox.layers.23.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
226 |
+
"gpt_neox.layers.23.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
227 |
+
"gpt_neox.layers.23.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
228 |
+
"gpt_neox.layers.23.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
229 |
+
"gpt_neox.layers.23.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
230 |
+
"gpt_neox.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
231 |
+
"gpt_neox.layers.24.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
232 |
+
"gpt_neox.layers.24.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
233 |
+
"gpt_neox.layers.24.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
234 |
+
"gpt_neox.layers.24.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
235 |
+
"gpt_neox.layers.24.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
236 |
+
"gpt_neox.layers.24.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
237 |
+
"gpt_neox.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
238 |
+
"gpt_neox.layers.24.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
239 |
+
"gpt_neox.layers.24.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
240 |
+
"gpt_neox.layers.24.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
241 |
+
"gpt_neox.layers.24.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
242 |
+
"gpt_neox.layers.24.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
243 |
+
"gpt_neox.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
244 |
+
"gpt_neox.layers.25.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
245 |
+
"gpt_neox.layers.25.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
246 |
+
"gpt_neox.layers.25.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
247 |
+
"gpt_neox.layers.25.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
248 |
+
"gpt_neox.layers.25.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
249 |
+
"gpt_neox.layers.25.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
250 |
+
"gpt_neox.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
251 |
+
"gpt_neox.layers.25.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
252 |
+
"gpt_neox.layers.25.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
253 |
+
"gpt_neox.layers.25.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
254 |
+
"gpt_neox.layers.25.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
255 |
+
"gpt_neox.layers.25.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
256 |
+
"gpt_neox.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
257 |
+
"gpt_neox.layers.26.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
258 |
+
"gpt_neox.layers.26.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
259 |
+
"gpt_neox.layers.26.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
260 |
+
"gpt_neox.layers.26.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
261 |
+
"gpt_neox.layers.26.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
262 |
+
"gpt_neox.layers.26.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
263 |
+
"gpt_neox.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
264 |
+
"gpt_neox.layers.26.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
265 |
+
"gpt_neox.layers.26.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
266 |
+
"gpt_neox.layers.26.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
267 |
+
"gpt_neox.layers.26.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
268 |
+
"gpt_neox.layers.26.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
269 |
+
"gpt_neox.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
270 |
+
"gpt_neox.layers.27.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
271 |
+
"gpt_neox.layers.27.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
272 |
+
"gpt_neox.layers.27.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
273 |
+
"gpt_neox.layers.27.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
274 |
+
"gpt_neox.layers.27.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
275 |
+
"gpt_neox.layers.27.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
276 |
+
"gpt_neox.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
277 |
+
"gpt_neox.layers.27.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
278 |
+
"gpt_neox.layers.27.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
279 |
+
"gpt_neox.layers.27.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
280 |
+
"gpt_neox.layers.27.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
281 |
+
"gpt_neox.layers.27.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
282 |
+
"gpt_neox.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
283 |
+
"gpt_neox.layers.28.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
284 |
+
"gpt_neox.layers.28.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
285 |
+
"gpt_neox.layers.28.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
286 |
+
"gpt_neox.layers.28.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
287 |
+
"gpt_neox.layers.28.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
288 |
+
"gpt_neox.layers.28.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
289 |
+
"gpt_neox.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
290 |
+
"gpt_neox.layers.28.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
291 |
+
"gpt_neox.layers.28.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
292 |
+
"gpt_neox.layers.28.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
293 |
+
"gpt_neox.layers.28.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
294 |
+
"gpt_neox.layers.28.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
295 |
+
"gpt_neox.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
296 |
+
"gpt_neox.layers.29.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
297 |
+
"gpt_neox.layers.29.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
298 |
+
"gpt_neox.layers.29.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
299 |
+
"gpt_neox.layers.29.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
300 |
+
"gpt_neox.layers.29.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
301 |
+
"gpt_neox.layers.29.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
302 |
+
"gpt_neox.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
303 |
+
"gpt_neox.layers.29.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
304 |
+
"gpt_neox.layers.29.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
305 |
+
"gpt_neox.layers.29.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
306 |
+
"gpt_neox.layers.29.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
307 |
+
"gpt_neox.layers.29.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
308 |
+
"gpt_neox.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
309 |
+
"gpt_neox.layers.3.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
310 |
+
"gpt_neox.layers.3.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
311 |
+
"gpt_neox.layers.3.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
312 |
+
"gpt_neox.layers.3.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
313 |
+
"gpt_neox.layers.3.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
314 |
+
"gpt_neox.layers.3.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
315 |
+
"gpt_neox.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
316 |
+
"gpt_neox.layers.3.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
317 |
+
"gpt_neox.layers.3.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
318 |
+
"gpt_neox.layers.3.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
319 |
+
"gpt_neox.layers.3.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
320 |
+
"gpt_neox.layers.3.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
321 |
+
"gpt_neox.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
322 |
+
"gpt_neox.layers.30.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
323 |
+
"gpt_neox.layers.30.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
324 |
+
"gpt_neox.layers.30.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
325 |
+
"gpt_neox.layers.30.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
326 |
+
"gpt_neox.layers.30.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
327 |
+
"gpt_neox.layers.30.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
328 |
+
"gpt_neox.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
329 |
+
"gpt_neox.layers.30.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
330 |
+
"gpt_neox.layers.30.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
331 |
+
"gpt_neox.layers.30.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
332 |
+
"gpt_neox.layers.30.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
333 |
+
"gpt_neox.layers.30.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
334 |
+
"gpt_neox.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
335 |
+
"gpt_neox.layers.31.attention.dense.bias": "pytorch_model-00003-of-00003.bin",
|
336 |
+
"gpt_neox.layers.31.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
|
337 |
+
"gpt_neox.layers.31.attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
|
338 |
+
"gpt_neox.layers.31.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
|
339 |
+
"gpt_neox.layers.31.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
340 |
+
"gpt_neox.layers.31.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
341 |
+
"gpt_neox.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
342 |
+
"gpt_neox.layers.31.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00003.bin",
|
343 |
+
"gpt_neox.layers.31.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
|
344 |
+
"gpt_neox.layers.31.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00003.bin",
|
345 |
+
"gpt_neox.layers.31.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
|
346 |
+
"gpt_neox.layers.31.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
347 |
+
"gpt_neox.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
348 |
+
"gpt_neox.layers.32.attention.dense.bias": "pytorch_model-00003-of-00003.bin",
|
349 |
+
"gpt_neox.layers.32.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
|
350 |
+
"gpt_neox.layers.32.attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
|
351 |
+
"gpt_neox.layers.32.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
|
352 |
+
"gpt_neox.layers.32.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
353 |
+
"gpt_neox.layers.32.input_layernorm.bias": "pytorch_model-00003-of-00003.bin",
|
354 |
+
"gpt_neox.layers.32.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
355 |
+
"gpt_neox.layers.32.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00003.bin",
|
356 |
+
"gpt_neox.layers.32.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
|
357 |
+
"gpt_neox.layers.32.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00003.bin",
|
358 |
+
"gpt_neox.layers.32.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
|
359 |
+
"gpt_neox.layers.32.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
|
360 |
+
"gpt_neox.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
361 |
+
"gpt_neox.layers.33.attention.dense.bias": "pytorch_model-00003-of-00003.bin",
|
362 |
+
"gpt_neox.layers.33.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
|
363 |
+
"gpt_neox.layers.33.attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
|
364 |
+
"gpt_neox.layers.33.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
|
365 |
+
"gpt_neox.layers.33.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
366 |
+
"gpt_neox.layers.33.input_layernorm.bias": "pytorch_model-00003-of-00003.bin",
|
367 |
+
"gpt_neox.layers.33.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
368 |
+
"gpt_neox.layers.33.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00003.bin",
|
369 |
+
"gpt_neox.layers.33.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
|
370 |
+
"gpt_neox.layers.33.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00003.bin",
|
371 |
+
"gpt_neox.layers.33.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
|
372 |
+
"gpt_neox.layers.33.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
|
373 |
+
"gpt_neox.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
374 |
+
"gpt_neox.layers.34.attention.dense.bias": "pytorch_model-00003-of-00003.bin",
|
375 |
+
"gpt_neox.layers.34.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
|
376 |
+
"gpt_neox.layers.34.attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
|
377 |
+
"gpt_neox.layers.34.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
|
378 |
+
"gpt_neox.layers.34.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
379 |
+
"gpt_neox.layers.34.input_layernorm.bias": "pytorch_model-00003-of-00003.bin",
|
380 |
+
"gpt_neox.layers.34.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
381 |
+
"gpt_neox.layers.34.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00003.bin",
|
382 |
+
"gpt_neox.layers.34.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
|
383 |
+
"gpt_neox.layers.34.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00003.bin",
|
384 |
+
"gpt_neox.layers.34.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
|
385 |
+
"gpt_neox.layers.34.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
|
386 |
+
"gpt_neox.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
387 |
+
"gpt_neox.layers.35.attention.dense.bias": "pytorch_model-00003-of-00003.bin",
|
388 |
+
"gpt_neox.layers.35.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
|
389 |
+
"gpt_neox.layers.35.attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
|
390 |
+
"gpt_neox.layers.35.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
|
391 |
+
"gpt_neox.layers.35.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
392 |
+
"gpt_neox.layers.35.input_layernorm.bias": "pytorch_model-00003-of-00003.bin",
|
393 |
+
"gpt_neox.layers.35.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
394 |
+
"gpt_neox.layers.35.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00003.bin",
|
395 |
+
"gpt_neox.layers.35.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
|
396 |
+
"gpt_neox.layers.35.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00003.bin",
|
397 |
+
"gpt_neox.layers.35.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
|
398 |
+
"gpt_neox.layers.35.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
|
399 |
+
"gpt_neox.layers.35.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
400 |
+
"gpt_neox.layers.36.attention.dense.bias": "pytorch_model-00003-of-00003.bin",
|
401 |
+
"gpt_neox.layers.36.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
|
402 |
+
"gpt_neox.layers.36.attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
|
403 |
+
"gpt_neox.layers.36.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
|
404 |
+
"gpt_neox.layers.36.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
405 |
+
"gpt_neox.layers.36.input_layernorm.bias": "pytorch_model-00003-of-00003.bin",
|
406 |
+
"gpt_neox.layers.36.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
407 |
+
"gpt_neox.layers.36.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00003.bin",
|
408 |
+
"gpt_neox.layers.36.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
|
409 |
+
"gpt_neox.layers.36.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00003.bin",
|
410 |
+
"gpt_neox.layers.36.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
|
411 |
+
"gpt_neox.layers.36.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
|
412 |
+
"gpt_neox.layers.36.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
413 |
+
"gpt_neox.layers.37.attention.dense.bias": "pytorch_model-00003-of-00003.bin",
|
414 |
+
"gpt_neox.layers.37.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
|
415 |
+
"gpt_neox.layers.37.attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
|
416 |
+
"gpt_neox.layers.37.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
|
417 |
+
"gpt_neox.layers.37.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
418 |
+
"gpt_neox.layers.37.input_layernorm.bias": "pytorch_model-00003-of-00003.bin",
|
419 |
+
"gpt_neox.layers.37.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
420 |
+
"gpt_neox.layers.37.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00003.bin",
|
421 |
+
"gpt_neox.layers.37.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
|
422 |
+
"gpt_neox.layers.37.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00003.bin",
|
423 |
+
"gpt_neox.layers.37.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
|
424 |
+
"gpt_neox.layers.37.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
|
425 |
+
"gpt_neox.layers.37.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
426 |
+
"gpt_neox.layers.38.attention.dense.bias": "pytorch_model-00003-of-00003.bin",
|
427 |
+
"gpt_neox.layers.38.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
|
428 |
+
"gpt_neox.layers.38.attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
|
429 |
+
"gpt_neox.layers.38.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
|
430 |
+
"gpt_neox.layers.38.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
431 |
+
"gpt_neox.layers.38.input_layernorm.bias": "pytorch_model-00003-of-00003.bin",
|
432 |
+
"gpt_neox.layers.38.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
433 |
+
"gpt_neox.layers.38.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00003.bin",
|
434 |
+
"gpt_neox.layers.38.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
|
435 |
+
"gpt_neox.layers.38.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00003.bin",
|
436 |
+
"gpt_neox.layers.38.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
|
437 |
+
"gpt_neox.layers.38.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
|
438 |
+
"gpt_neox.layers.38.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
439 |
+
"gpt_neox.layers.39.attention.dense.bias": "pytorch_model-00003-of-00003.bin",
|
440 |
+
"gpt_neox.layers.39.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
|
441 |
+
"gpt_neox.layers.39.attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
|
442 |
+
"gpt_neox.layers.39.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
|
443 |
+
"gpt_neox.layers.39.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
444 |
+
"gpt_neox.layers.39.input_layernorm.bias": "pytorch_model-00003-of-00003.bin",
|
445 |
+
"gpt_neox.layers.39.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
446 |
+
"gpt_neox.layers.39.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00003.bin",
|
447 |
+
"gpt_neox.layers.39.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
|
448 |
+
"gpt_neox.layers.39.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00003.bin",
|
449 |
+
"gpt_neox.layers.39.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
|
450 |
+
"gpt_neox.layers.39.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
|
451 |
+
"gpt_neox.layers.39.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
452 |
+
"gpt_neox.layers.4.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
453 |
+
"gpt_neox.layers.4.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
454 |
+
"gpt_neox.layers.4.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
455 |
+
"gpt_neox.layers.4.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
456 |
+
"gpt_neox.layers.4.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
457 |
+
"gpt_neox.layers.4.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
458 |
+
"gpt_neox.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
459 |
+
"gpt_neox.layers.4.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
460 |
+
"gpt_neox.layers.4.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
461 |
+
"gpt_neox.layers.4.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
462 |
+
"gpt_neox.layers.4.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
463 |
+
"gpt_neox.layers.4.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
464 |
+
"gpt_neox.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
465 |
+
"gpt_neox.layers.5.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
466 |
+
"gpt_neox.layers.5.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
467 |
+
"gpt_neox.layers.5.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
468 |
+
"gpt_neox.layers.5.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
469 |
+
"gpt_neox.layers.5.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
470 |
+
"gpt_neox.layers.5.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
471 |
+
"gpt_neox.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
472 |
+
"gpt_neox.layers.5.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
473 |
+
"gpt_neox.layers.5.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
474 |
+
"gpt_neox.layers.5.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
475 |
+
"gpt_neox.layers.5.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
476 |
+
"gpt_neox.layers.5.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
477 |
+
"gpt_neox.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
478 |
+
"gpt_neox.layers.6.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
479 |
+
"gpt_neox.layers.6.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
480 |
+
"gpt_neox.layers.6.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
481 |
+
"gpt_neox.layers.6.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
482 |
+
"gpt_neox.layers.6.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
483 |
+
"gpt_neox.layers.6.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
484 |
+
"gpt_neox.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
485 |
+
"gpt_neox.layers.6.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
486 |
+
"gpt_neox.layers.6.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
487 |
+
"gpt_neox.layers.6.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
488 |
+
"gpt_neox.layers.6.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
489 |
+
"gpt_neox.layers.6.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
490 |
+
"gpt_neox.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
491 |
+
"gpt_neox.layers.7.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
492 |
+
"gpt_neox.layers.7.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
493 |
+
"gpt_neox.layers.7.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
494 |
+
"gpt_neox.layers.7.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
495 |
+
"gpt_neox.layers.7.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
496 |
+
"gpt_neox.layers.7.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
497 |
+
"gpt_neox.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
498 |
+
"gpt_neox.layers.7.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
499 |
+
"gpt_neox.layers.7.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
500 |
+
"gpt_neox.layers.7.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
501 |
+
"gpt_neox.layers.7.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
502 |
+
"gpt_neox.layers.7.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
503 |
+
"gpt_neox.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
504 |
+
"gpt_neox.layers.8.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
505 |
+
"gpt_neox.layers.8.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
506 |
+
"gpt_neox.layers.8.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
507 |
+
"gpt_neox.layers.8.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
508 |
+
"gpt_neox.layers.8.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
509 |
+
"gpt_neox.layers.8.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
510 |
+
"gpt_neox.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
511 |
+
"gpt_neox.layers.8.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
512 |
+
"gpt_neox.layers.8.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
513 |
+
"gpt_neox.layers.8.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
514 |
+
"gpt_neox.layers.8.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
515 |
+
"gpt_neox.layers.8.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
516 |
+
"gpt_neox.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
517 |
+
"gpt_neox.layers.9.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
518 |
+
"gpt_neox.layers.9.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
519 |
+
"gpt_neox.layers.9.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
520 |
+
"gpt_neox.layers.9.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
521 |
+
"gpt_neox.layers.9.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
522 |
+
"gpt_neox.layers.9.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
523 |
+
"gpt_neox.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
524 |
+
"gpt_neox.layers.9.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
525 |
+
"gpt_neox.layers.9.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
526 |
+
"gpt_neox.layers.9.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
527 |
+
"gpt_neox.layers.9.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
528 |
+
"gpt_neox.layers.9.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
529 |
+
"gpt_neox.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin"
|
530 |
+
}
|
531 |
+
}
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7508d4b8dd267de5cc58e972da25236687927651336a28f292c92f7f23951475
|
3 |
+
size 14575
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b02be2c961050591e39e048540caca52c7186951e99ec479ac50c29b65770a6
|
3 |
+
size 627
|
special_tokens_map.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|endoftext|>",
|
4 |
+
"<|sep|>",
|
5 |
+
"<|acc|>",
|
6 |
+
"<|tel|>",
|
7 |
+
"<|rrn|>"
|
8 |
+
],
|
9 |
+
"eos_token": "<|endoftext|>",
|
10 |
+
"pad_token": "<|endoftext|>"
|
11 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"clean_up_tokenization_spaces": true,
|
3 |
+
"eos_token": "<|endoftext|>",
|
4 |
+
"model_max_length": 1000000000000000019884624838656,
|
5 |
+
"pad_token": "<|endoftext|>",
|
6 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
7 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,2713 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.998330550918197,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 449,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"learning_rate": 5e-05,
|
14 |
+
"loss": 2.3424,
|
15 |
+
"step": 1
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.01,
|
19 |
+
"learning_rate": 5e-05,
|
20 |
+
"loss": 2.3416,
|
21 |
+
"step": 2
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.02,
|
25 |
+
"learning_rate": 4.995805369127517e-05,
|
26 |
+
"loss": 2.3702,
|
27 |
+
"step": 3
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.03,
|
31 |
+
"learning_rate": 4.9916107382550336e-05,
|
32 |
+
"loss": 2.1306,
|
33 |
+
"step": 4
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.03,
|
37 |
+
"learning_rate": 4.9874161073825505e-05,
|
38 |
+
"loss": 2.3988,
|
39 |
+
"step": 5
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.04,
|
43 |
+
"learning_rate": 4.9874161073825505e-05,
|
44 |
+
"loss": 2.6274,
|
45 |
+
"step": 6
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.05,
|
49 |
+
"learning_rate": 4.9874161073825505e-05,
|
50 |
+
"loss": 2.693,
|
51 |
+
"step": 7
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.05,
|
55 |
+
"learning_rate": 4.983221476510067e-05,
|
56 |
+
"loss": 2.6681,
|
57 |
+
"step": 8
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.06,
|
61 |
+
"learning_rate": 4.9790268456375845e-05,
|
62 |
+
"loss": 2.3159,
|
63 |
+
"step": 9
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.07,
|
67 |
+
"learning_rate": 4.974832214765101e-05,
|
68 |
+
"loss": 2.2781,
|
69 |
+
"step": 10
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.07,
|
73 |
+
"learning_rate": 4.970637583892618e-05,
|
74 |
+
"loss": 2.328,
|
75 |
+
"step": 11
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.08,
|
79 |
+
"learning_rate": 4.966442953020135e-05,
|
80 |
+
"loss": 2.1489,
|
81 |
+
"step": 12
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.09,
|
85 |
+
"learning_rate": 4.962248322147651e-05,
|
86 |
+
"loss": 2.0534,
|
87 |
+
"step": 13
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.09,
|
91 |
+
"learning_rate": 4.958053691275168e-05,
|
92 |
+
"loss": 2.1968,
|
93 |
+
"step": 14
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.1,
|
97 |
+
"learning_rate": 4.9538590604026845e-05,
|
98 |
+
"loss": 1.99,
|
99 |
+
"step": 15
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.11,
|
103 |
+
"learning_rate": 4.9496644295302015e-05,
|
104 |
+
"loss": 1.9691,
|
105 |
+
"step": 16
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.11,
|
109 |
+
"learning_rate": 4.945469798657718e-05,
|
110 |
+
"loss": 2.0833,
|
111 |
+
"step": 17
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.12,
|
115 |
+
"learning_rate": 4.9412751677852355e-05,
|
116 |
+
"loss": 1.9973,
|
117 |
+
"step": 18
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.13,
|
121 |
+
"learning_rate": 4.937080536912752e-05,
|
122 |
+
"loss": 1.9415,
|
123 |
+
"step": 19
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.13,
|
127 |
+
"learning_rate": 4.932885906040269e-05,
|
128 |
+
"loss": 2.0112,
|
129 |
+
"step": 20
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.14,
|
133 |
+
"learning_rate": 4.928691275167786e-05,
|
134 |
+
"loss": 2.1733,
|
135 |
+
"step": 21
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.15,
|
139 |
+
"learning_rate": 4.924496644295302e-05,
|
140 |
+
"loss": 2.4138,
|
141 |
+
"step": 22
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.15,
|
145 |
+
"learning_rate": 4.920302013422819e-05,
|
146 |
+
"loss": 2.1533,
|
147 |
+
"step": 23
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.16,
|
151 |
+
"learning_rate": 4.9161073825503354e-05,
|
152 |
+
"loss": 2.0635,
|
153 |
+
"step": 24
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.17,
|
157 |
+
"learning_rate": 4.9119127516778524e-05,
|
158 |
+
"loss": 1.9881,
|
159 |
+
"step": 25
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.17,
|
163 |
+
"learning_rate": 4.9077181208053694e-05,
|
164 |
+
"loss": 1.9963,
|
165 |
+
"step": 26
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.18,
|
169 |
+
"learning_rate": 4.9035234899328864e-05,
|
170 |
+
"loss": 2.0764,
|
171 |
+
"step": 27
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.19,
|
175 |
+
"learning_rate": 4.8993288590604034e-05,
|
176 |
+
"loss": 1.959,
|
177 |
+
"step": 28
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.19,
|
181 |
+
"learning_rate": 4.89513422818792e-05,
|
182 |
+
"loss": 2.0066,
|
183 |
+
"step": 29
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.2,
|
187 |
+
"learning_rate": 4.890939597315437e-05,
|
188 |
+
"loss": 1.9056,
|
189 |
+
"step": 30
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.21,
|
193 |
+
"learning_rate": 4.886744966442953e-05,
|
194 |
+
"loss": 1.9512,
|
195 |
+
"step": 31
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.21,
|
199 |
+
"learning_rate": 4.88255033557047e-05,
|
200 |
+
"loss": 1.962,
|
201 |
+
"step": 32
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.22,
|
205 |
+
"learning_rate": 4.878355704697986e-05,
|
206 |
+
"loss": 1.8714,
|
207 |
+
"step": 33
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.23,
|
211 |
+
"learning_rate": 4.874161073825503e-05,
|
212 |
+
"loss": 1.8087,
|
213 |
+
"step": 34
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.23,
|
217 |
+
"learning_rate": 4.86996644295302e-05,
|
218 |
+
"loss": 1.9392,
|
219 |
+
"step": 35
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.24,
|
223 |
+
"learning_rate": 4.865771812080537e-05,
|
224 |
+
"loss": 1.9197,
|
225 |
+
"step": 36
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.25,
|
229 |
+
"learning_rate": 4.861577181208054e-05,
|
230 |
+
"loss": 1.9624,
|
231 |
+
"step": 37
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.25,
|
235 |
+
"learning_rate": 4.8573825503355706e-05,
|
236 |
+
"loss": 1.9549,
|
237 |
+
"step": 38
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.26,
|
241 |
+
"learning_rate": 4.8531879194630876e-05,
|
242 |
+
"loss": 1.8778,
|
243 |
+
"step": 39
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.27,
|
247 |
+
"learning_rate": 4.848993288590604e-05,
|
248 |
+
"loss": 1.9317,
|
249 |
+
"step": 40
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.27,
|
253 |
+
"learning_rate": 4.844798657718121e-05,
|
254 |
+
"loss": 1.9082,
|
255 |
+
"step": 41
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.28,
|
259 |
+
"learning_rate": 4.840604026845638e-05,
|
260 |
+
"loss": 1.8862,
|
261 |
+
"step": 42
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.29,
|
265 |
+
"learning_rate": 4.836409395973154e-05,
|
266 |
+
"loss": 1.9192,
|
267 |
+
"step": 43
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.29,
|
271 |
+
"learning_rate": 4.832214765100672e-05,
|
272 |
+
"loss": 1.9409,
|
273 |
+
"step": 44
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.3,
|
277 |
+
"learning_rate": 4.828020134228188e-05,
|
278 |
+
"loss": 1.8827,
|
279 |
+
"step": 45
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.31,
|
283 |
+
"learning_rate": 4.823825503355705e-05,
|
284 |
+
"loss": 1.8866,
|
285 |
+
"step": 46
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.31,
|
289 |
+
"learning_rate": 4.8196308724832215e-05,
|
290 |
+
"loss": 1.9024,
|
291 |
+
"step": 47
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.32,
|
295 |
+
"learning_rate": 4.8154362416107385e-05,
|
296 |
+
"loss": 1.8225,
|
297 |
+
"step": 48
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.33,
|
301 |
+
"learning_rate": 4.8112416107382555e-05,
|
302 |
+
"loss": 1.846,
|
303 |
+
"step": 49
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.33,
|
307 |
+
"learning_rate": 4.807046979865772e-05,
|
308 |
+
"loss": 1.9671,
|
309 |
+
"step": 50
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.34,
|
313 |
+
"learning_rate": 4.802852348993289e-05,
|
314 |
+
"loss": 1.9424,
|
315 |
+
"step": 51
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.35,
|
319 |
+
"learning_rate": 4.798657718120805e-05,
|
320 |
+
"loss": 1.8501,
|
321 |
+
"step": 52
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.35,
|
325 |
+
"learning_rate": 4.794463087248323e-05,
|
326 |
+
"loss": 1.866,
|
327 |
+
"step": 53
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.36,
|
331 |
+
"learning_rate": 4.790268456375839e-05,
|
332 |
+
"loss": 1.8838,
|
333 |
+
"step": 54
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.37,
|
337 |
+
"learning_rate": 4.786073825503356e-05,
|
338 |
+
"loss": 1.8818,
|
339 |
+
"step": 55
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.37,
|
343 |
+
"learning_rate": 4.7818791946308725e-05,
|
344 |
+
"loss": 1.879,
|
345 |
+
"step": 56
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.38,
|
349 |
+
"learning_rate": 4.7776845637583895e-05,
|
350 |
+
"loss": 1.8943,
|
351 |
+
"step": 57
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 0.39,
|
355 |
+
"learning_rate": 4.7734899328859064e-05,
|
356 |
+
"loss": 1.8722,
|
357 |
+
"step": 58
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.39,
|
361 |
+
"learning_rate": 4.769295302013423e-05,
|
362 |
+
"loss": 1.8072,
|
363 |
+
"step": 59
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 0.4,
|
367 |
+
"learning_rate": 4.76510067114094e-05,
|
368 |
+
"loss": 1.8448,
|
369 |
+
"step": 60
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.41,
|
373 |
+
"learning_rate": 4.760906040268457e-05,
|
374 |
+
"loss": 1.87,
|
375 |
+
"step": 61
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.41,
|
379 |
+
"learning_rate": 4.756711409395974e-05,
|
380 |
+
"loss": 1.9172,
|
381 |
+
"step": 62
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.42,
|
385 |
+
"learning_rate": 4.75251677852349e-05,
|
386 |
+
"loss": 1.8836,
|
387 |
+
"step": 63
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.43,
|
391 |
+
"learning_rate": 4.748322147651007e-05,
|
392 |
+
"loss": 1.8625,
|
393 |
+
"step": 64
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.43,
|
397 |
+
"learning_rate": 4.744127516778524e-05,
|
398 |
+
"loss": 1.8304,
|
399 |
+
"step": 65
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.44,
|
403 |
+
"learning_rate": 4.7399328859060404e-05,
|
404 |
+
"loss": 1.8414,
|
405 |
+
"step": 66
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.45,
|
409 |
+
"learning_rate": 4.7357382550335574e-05,
|
410 |
+
"loss": 1.9091,
|
411 |
+
"step": 67
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.45,
|
415 |
+
"learning_rate": 4.731543624161074e-05,
|
416 |
+
"loss": 1.8627,
|
417 |
+
"step": 68
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.46,
|
421 |
+
"learning_rate": 4.727348993288591e-05,
|
422 |
+
"loss": 1.881,
|
423 |
+
"step": 69
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.47,
|
427 |
+
"learning_rate": 4.723154362416108e-05,
|
428 |
+
"loss": 1.7762,
|
429 |
+
"step": 70
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.47,
|
433 |
+
"learning_rate": 4.718959731543625e-05,
|
434 |
+
"loss": 1.8732,
|
435 |
+
"step": 71
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 0.48,
|
439 |
+
"learning_rate": 4.714765100671141e-05,
|
440 |
+
"loss": 1.858,
|
441 |
+
"step": 72
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.49,
|
445 |
+
"learning_rate": 4.710570469798658e-05,
|
446 |
+
"loss": 1.8388,
|
447 |
+
"step": 73
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 0.49,
|
451 |
+
"learning_rate": 4.706375838926175e-05,
|
452 |
+
"loss": 1.8227,
|
453 |
+
"step": 74
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.5,
|
457 |
+
"learning_rate": 4.702181208053691e-05,
|
458 |
+
"loss": 1.7938,
|
459 |
+
"step": 75
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.51,
|
463 |
+
"learning_rate": 4.697986577181208e-05,
|
464 |
+
"loss": 1.8297,
|
465 |
+
"step": 76
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.51,
|
469 |
+
"learning_rate": 4.6937919463087246e-05,
|
470 |
+
"loss": 1.8499,
|
471 |
+
"step": 77
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.52,
|
475 |
+
"learning_rate": 4.6895973154362416e-05,
|
476 |
+
"loss": 1.8268,
|
477 |
+
"step": 78
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 0.53,
|
481 |
+
"learning_rate": 4.6854026845637586e-05,
|
482 |
+
"loss": 1.8147,
|
483 |
+
"step": 79
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 0.53,
|
487 |
+
"learning_rate": 4.6812080536912756e-05,
|
488 |
+
"loss": 1.8521,
|
489 |
+
"step": 80
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.54,
|
493 |
+
"learning_rate": 4.6770134228187926e-05,
|
494 |
+
"loss": 1.851,
|
495 |
+
"step": 81
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.55,
|
499 |
+
"learning_rate": 4.672818791946309e-05,
|
500 |
+
"loss": 1.8616,
|
501 |
+
"step": 82
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.55,
|
505 |
+
"learning_rate": 4.668624161073826e-05,
|
506 |
+
"loss": 1.8746,
|
507 |
+
"step": 83
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.56,
|
511 |
+
"learning_rate": 4.664429530201342e-05,
|
512 |
+
"loss": 1.8594,
|
513 |
+
"step": 84
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.57,
|
517 |
+
"learning_rate": 4.660234899328859e-05,
|
518 |
+
"loss": 1.8699,
|
519 |
+
"step": 85
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 0.57,
|
523 |
+
"learning_rate": 4.6560402684563755e-05,
|
524 |
+
"loss": 1.8696,
|
525 |
+
"step": 86
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 0.58,
|
529 |
+
"learning_rate": 4.6518456375838925e-05,
|
530 |
+
"loss": 1.8658,
|
531 |
+
"step": 87
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 0.59,
|
535 |
+
"learning_rate": 4.6476510067114095e-05,
|
536 |
+
"loss": 1.8581,
|
537 |
+
"step": 88
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.59,
|
541 |
+
"learning_rate": 4.6434563758389265e-05,
|
542 |
+
"loss": 1.8231,
|
543 |
+
"step": 89
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.6,
|
547 |
+
"learning_rate": 4.6392617449664435e-05,
|
548 |
+
"loss": 1.8652,
|
549 |
+
"step": 90
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.61,
|
553 |
+
"learning_rate": 4.63506711409396e-05,
|
554 |
+
"loss": 1.8778,
|
555 |
+
"step": 91
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.61,
|
559 |
+
"learning_rate": 4.630872483221477e-05,
|
560 |
+
"loss": 1.8551,
|
561 |
+
"step": 92
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 0.62,
|
565 |
+
"learning_rate": 4.626677852348993e-05,
|
566 |
+
"loss": 1.8503,
|
567 |
+
"step": 93
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 0.63,
|
571 |
+
"learning_rate": 4.62248322147651e-05,
|
572 |
+
"loss": 1.8302,
|
573 |
+
"step": 94
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 0.63,
|
577 |
+
"learning_rate": 4.618288590604027e-05,
|
578 |
+
"loss": 1.8571,
|
579 |
+
"step": 95
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.64,
|
583 |
+
"learning_rate": 4.6140939597315434e-05,
|
584 |
+
"loss": 1.8549,
|
585 |
+
"step": 96
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.65,
|
589 |
+
"learning_rate": 4.609899328859061e-05,
|
590 |
+
"loss": 1.8925,
|
591 |
+
"step": 97
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.65,
|
595 |
+
"learning_rate": 4.6057046979865774e-05,
|
596 |
+
"loss": 1.8608,
|
597 |
+
"step": 98
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.66,
|
601 |
+
"learning_rate": 4.6015100671140944e-05,
|
602 |
+
"loss": 1.8521,
|
603 |
+
"step": 99
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 0.67,
|
607 |
+
"learning_rate": 4.597315436241611e-05,
|
608 |
+
"loss": 1.8835,
|
609 |
+
"step": 100
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.67,
|
613 |
+
"learning_rate": 4.593120805369128e-05,
|
614 |
+
"loss": 1.7923,
|
615 |
+
"step": 101
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.68,
|
619 |
+
"learning_rate": 4.588926174496645e-05,
|
620 |
+
"loss": 1.7976,
|
621 |
+
"step": 102
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 0.69,
|
625 |
+
"learning_rate": 4.584731543624161e-05,
|
626 |
+
"loss": 1.8535,
|
627 |
+
"step": 103
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.69,
|
631 |
+
"learning_rate": 4.580536912751678e-05,
|
632 |
+
"loss": 1.829,
|
633 |
+
"step": 104
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.7,
|
637 |
+
"learning_rate": 4.576342281879195e-05,
|
638 |
+
"loss": 1.8247,
|
639 |
+
"step": 105
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.71,
|
643 |
+
"learning_rate": 4.572147651006712e-05,
|
644 |
+
"loss": 1.8068,
|
645 |
+
"step": 106
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 0.71,
|
649 |
+
"learning_rate": 4.5679530201342284e-05,
|
650 |
+
"loss": 1.7786,
|
651 |
+
"step": 107
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 0.72,
|
655 |
+
"learning_rate": 4.5637583892617453e-05,
|
656 |
+
"loss": 1.8292,
|
657 |
+
"step": 108
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.73,
|
661 |
+
"learning_rate": 4.559563758389262e-05,
|
662 |
+
"loss": 1.8265,
|
663 |
+
"step": 109
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 0.73,
|
667 |
+
"learning_rate": 4.5553691275167787e-05,
|
668 |
+
"loss": 1.8142,
|
669 |
+
"step": 110
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.74,
|
673 |
+
"learning_rate": 4.5511744966442957e-05,
|
674 |
+
"loss": 1.8448,
|
675 |
+
"step": 111
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.75,
|
679 |
+
"learning_rate": 4.546979865771812e-05,
|
680 |
+
"loss": 1.7959,
|
681 |
+
"step": 112
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.75,
|
685 |
+
"learning_rate": 4.542785234899329e-05,
|
686 |
+
"loss": 1.8464,
|
687 |
+
"step": 113
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 0.76,
|
691 |
+
"learning_rate": 4.538590604026846e-05,
|
692 |
+
"loss": 1.8974,
|
693 |
+
"step": 114
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 0.77,
|
697 |
+
"learning_rate": 4.534395973154363e-05,
|
698 |
+
"loss": 1.8465,
|
699 |
+
"step": 115
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 0.77,
|
703 |
+
"learning_rate": 4.530201342281879e-05,
|
704 |
+
"loss": 1.8479,
|
705 |
+
"step": 116
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.78,
|
709 |
+
"learning_rate": 4.526006711409396e-05,
|
710 |
+
"loss": 1.8569,
|
711 |
+
"step": 117
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.79,
|
715 |
+
"learning_rate": 4.521812080536913e-05,
|
716 |
+
"loss": 1.8481,
|
717 |
+
"step": 118
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.79,
|
721 |
+
"learning_rate": 4.5176174496644296e-05,
|
722 |
+
"loss": 1.8177,
|
723 |
+
"step": 119
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.8,
|
727 |
+
"learning_rate": 4.5134228187919466e-05,
|
728 |
+
"loss": 1.8628,
|
729 |
+
"step": 120
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 0.81,
|
733 |
+
"learning_rate": 4.509228187919463e-05,
|
734 |
+
"loss": 1.8455,
|
735 |
+
"step": 121
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 0.81,
|
739 |
+
"learning_rate": 4.50503355704698e-05,
|
740 |
+
"loss": 1.8556,
|
741 |
+
"step": 122
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 0.82,
|
745 |
+
"learning_rate": 4.500838926174497e-05,
|
746 |
+
"loss": 1.7393,
|
747 |
+
"step": 123
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 0.83,
|
751 |
+
"learning_rate": 4.496644295302014e-05,
|
752 |
+
"loss": 1.8481,
|
753 |
+
"step": 124
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.83,
|
757 |
+
"learning_rate": 4.49244966442953e-05,
|
758 |
+
"loss": 1.8426,
|
759 |
+
"step": 125
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.84,
|
763 |
+
"learning_rate": 4.488255033557047e-05,
|
764 |
+
"loss": 1.8246,
|
765 |
+
"step": 126
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.85,
|
769 |
+
"learning_rate": 4.484060402684564e-05,
|
770 |
+
"loss": 1.8377,
|
771 |
+
"step": 127
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 0.85,
|
775 |
+
"learning_rate": 4.4798657718120805e-05,
|
776 |
+
"loss": 1.7963,
|
777 |
+
"step": 128
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 0.86,
|
781 |
+
"learning_rate": 4.4756711409395975e-05,
|
782 |
+
"loss": 1.8088,
|
783 |
+
"step": 129
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 0.87,
|
787 |
+
"learning_rate": 4.471476510067114e-05,
|
788 |
+
"loss": 1.8482,
|
789 |
+
"step": 130
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.87,
|
793 |
+
"learning_rate": 4.467281879194631e-05,
|
794 |
+
"loss": 1.8094,
|
795 |
+
"step": 131
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.88,
|
799 |
+
"learning_rate": 4.463087248322148e-05,
|
800 |
+
"loss": 1.8875,
|
801 |
+
"step": 132
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.89,
|
805 |
+
"learning_rate": 4.458892617449665e-05,
|
806 |
+
"loss": 1.7656,
|
807 |
+
"step": 133
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.89,
|
811 |
+
"learning_rate": 4.454697986577182e-05,
|
812 |
+
"loss": 1.8591,
|
813 |
+
"step": 134
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 0.9,
|
817 |
+
"learning_rate": 4.450503355704698e-05,
|
818 |
+
"loss": 1.8469,
|
819 |
+
"step": 135
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 0.91,
|
823 |
+
"learning_rate": 4.446308724832215e-05,
|
824 |
+
"loss": 1.7949,
|
825 |
+
"step": 136
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 0.91,
|
829 |
+
"learning_rate": 4.4421140939597314e-05,
|
830 |
+
"loss": 1.8503,
|
831 |
+
"step": 137
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 0.92,
|
835 |
+
"learning_rate": 4.4379194630872484e-05,
|
836 |
+
"loss": 1.7922,
|
837 |
+
"step": 138
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.93,
|
841 |
+
"learning_rate": 4.4337248322147654e-05,
|
842 |
+
"loss": 1.8318,
|
843 |
+
"step": 139
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.93,
|
847 |
+
"learning_rate": 4.4295302013422824e-05,
|
848 |
+
"loss": 1.8904,
|
849 |
+
"step": 140
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.94,
|
853 |
+
"learning_rate": 4.4253355704697994e-05,
|
854 |
+
"loss": 1.7657,
|
855 |
+
"step": 141
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 0.95,
|
859 |
+
"learning_rate": 4.421140939597316e-05,
|
860 |
+
"loss": 1.8428,
|
861 |
+
"step": 142
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 0.95,
|
865 |
+
"learning_rate": 4.416946308724833e-05,
|
866 |
+
"loss": 1.8724,
|
867 |
+
"step": 143
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 0.96,
|
871 |
+
"learning_rate": 4.412751677852349e-05,
|
872 |
+
"loss": 1.8586,
|
873 |
+
"step": 144
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.97,
|
877 |
+
"learning_rate": 4.408557046979866e-05,
|
878 |
+
"loss": 1.8459,
|
879 |
+
"step": 145
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.97,
|
883 |
+
"learning_rate": 4.4043624161073823e-05,
|
884 |
+
"loss": 1.8466,
|
885 |
+
"step": 146
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.98,
|
889 |
+
"learning_rate": 4.4001677852348993e-05,
|
890 |
+
"loss": 1.8361,
|
891 |
+
"step": 147
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.99,
|
895 |
+
"learning_rate": 4.395973154362416e-05,
|
896 |
+
"loss": 1.7921,
|
897 |
+
"step": 148
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 0.99,
|
901 |
+
"learning_rate": 4.391778523489933e-05,
|
902 |
+
"loss": 1.821,
|
903 |
+
"step": 149
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 1.0,
|
907 |
+
"learning_rate": 4.38758389261745e-05,
|
908 |
+
"loss": 1.6893,
|
909 |
+
"step": 150
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 1.01,
|
913 |
+
"learning_rate": 4.3833892617449666e-05,
|
914 |
+
"loss": 1.1744,
|
915 |
+
"step": 151
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 1.02,
|
919 |
+
"learning_rate": 4.3791946308724836e-05,
|
920 |
+
"loss": 1.1708,
|
921 |
+
"step": 152
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 1.02,
|
925 |
+
"learning_rate": 4.375e-05,
|
926 |
+
"loss": 1.0879,
|
927 |
+
"step": 153
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 1.03,
|
931 |
+
"learning_rate": 4.370805369127517e-05,
|
932 |
+
"loss": 1.1454,
|
933 |
+
"step": 154
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 1.04,
|
937 |
+
"learning_rate": 4.366610738255034e-05,
|
938 |
+
"loss": 1.0553,
|
939 |
+
"step": 155
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 1.04,
|
943 |
+
"learning_rate": 4.36241610738255e-05,
|
944 |
+
"loss": 1.0153,
|
945 |
+
"step": 156
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 1.05,
|
949 |
+
"learning_rate": 4.358221476510067e-05,
|
950 |
+
"loss": 1.0504,
|
951 |
+
"step": 157
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"epoch": 1.06,
|
955 |
+
"learning_rate": 4.354026845637584e-05,
|
956 |
+
"loss": 1.0519,
|
957 |
+
"step": 158
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 1.06,
|
961 |
+
"learning_rate": 4.349832214765101e-05,
|
962 |
+
"loss": 1.029,
|
963 |
+
"step": 159
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 1.07,
|
967 |
+
"learning_rate": 4.3456375838926176e-05,
|
968 |
+
"loss": 1.0393,
|
969 |
+
"step": 160
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 1.08,
|
973 |
+
"learning_rate": 4.3414429530201346e-05,
|
974 |
+
"loss": 1.0251,
|
975 |
+
"step": 161
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 1.08,
|
979 |
+
"learning_rate": 4.337248322147651e-05,
|
980 |
+
"loss": 1.0165,
|
981 |
+
"step": 162
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 1.09,
|
985 |
+
"learning_rate": 4.333053691275168e-05,
|
986 |
+
"loss": 1.1326,
|
987 |
+
"step": 163
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"epoch": 1.1,
|
991 |
+
"learning_rate": 4.328859060402685e-05,
|
992 |
+
"loss": 1.0326,
|
993 |
+
"step": 164
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"epoch": 1.1,
|
997 |
+
"learning_rate": 4.324664429530201e-05,
|
998 |
+
"loss": 1.0497,
|
999 |
+
"step": 165
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 1.11,
|
1003 |
+
"learning_rate": 4.320469798657718e-05,
|
1004 |
+
"loss": 0.9533,
|
1005 |
+
"step": 166
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 1.12,
|
1009 |
+
"learning_rate": 4.316275167785235e-05,
|
1010 |
+
"loss": 1.039,
|
1011 |
+
"step": 167
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 1.12,
|
1015 |
+
"learning_rate": 4.312080536912752e-05,
|
1016 |
+
"loss": 1.1064,
|
1017 |
+
"step": 168
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 1.13,
|
1021 |
+
"learning_rate": 4.3078859060402685e-05,
|
1022 |
+
"loss": 1.0939,
|
1023 |
+
"step": 169
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"epoch": 1.14,
|
1027 |
+
"learning_rate": 4.3036912751677855e-05,
|
1028 |
+
"loss": 1.0078,
|
1029 |
+
"step": 170
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 1.14,
|
1033 |
+
"learning_rate": 4.2994966442953025e-05,
|
1034 |
+
"loss": 1.0189,
|
1035 |
+
"step": 171
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 1.15,
|
1039 |
+
"learning_rate": 4.295302013422819e-05,
|
1040 |
+
"loss": 0.9982,
|
1041 |
+
"step": 172
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 1.16,
|
1045 |
+
"learning_rate": 4.291107382550336e-05,
|
1046 |
+
"loss": 0.9927,
|
1047 |
+
"step": 173
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 1.16,
|
1051 |
+
"learning_rate": 4.286912751677852e-05,
|
1052 |
+
"loss": 0.9942,
|
1053 |
+
"step": 174
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 1.17,
|
1057 |
+
"learning_rate": 4.28271812080537e-05,
|
1058 |
+
"loss": 1.0255,
|
1059 |
+
"step": 175
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 1.18,
|
1063 |
+
"learning_rate": 4.278523489932886e-05,
|
1064 |
+
"loss": 1.0477,
|
1065 |
+
"step": 176
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 1.18,
|
1069 |
+
"learning_rate": 4.274328859060403e-05,
|
1070 |
+
"loss": 0.952,
|
1071 |
+
"step": 177
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 1.19,
|
1075 |
+
"learning_rate": 4.27013422818792e-05,
|
1076 |
+
"loss": 1.01,
|
1077 |
+
"step": 178
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"epoch": 1.2,
|
1081 |
+
"learning_rate": 4.2659395973154364e-05,
|
1082 |
+
"loss": 1.0382,
|
1083 |
+
"step": 179
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 1.2,
|
1087 |
+
"learning_rate": 4.2617449664429534e-05,
|
1088 |
+
"loss": 1.0118,
|
1089 |
+
"step": 180
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 1.21,
|
1093 |
+
"learning_rate": 4.25755033557047e-05,
|
1094 |
+
"loss": 1.0751,
|
1095 |
+
"step": 181
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 1.22,
|
1099 |
+
"learning_rate": 4.253355704697987e-05,
|
1100 |
+
"loss": 1.006,
|
1101 |
+
"step": 182
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 1.22,
|
1105 |
+
"learning_rate": 4.249161073825503e-05,
|
1106 |
+
"loss": 1.0463,
|
1107 |
+
"step": 183
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 1.23,
|
1111 |
+
"learning_rate": 4.244966442953021e-05,
|
1112 |
+
"loss": 1.0699,
|
1113 |
+
"step": 184
|
1114 |
+
},
|
1115 |
+
{
|
1116 |
+
"epoch": 1.24,
|
1117 |
+
"learning_rate": 4.240771812080537e-05,
|
1118 |
+
"loss": 1.0076,
|
1119 |
+
"step": 185
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 1.24,
|
1123 |
+
"learning_rate": 4.236577181208054e-05,
|
1124 |
+
"loss": 0.9696,
|
1125 |
+
"step": 186
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 1.25,
|
1129 |
+
"learning_rate": 4.232382550335571e-05,
|
1130 |
+
"loss": 0.9489,
|
1131 |
+
"step": 187
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 1.26,
|
1135 |
+
"learning_rate": 4.228187919463087e-05,
|
1136 |
+
"loss": 0.9653,
|
1137 |
+
"step": 188
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 1.26,
|
1141 |
+
"learning_rate": 4.223993288590604e-05,
|
1142 |
+
"loss": 1.1345,
|
1143 |
+
"step": 189
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 1.27,
|
1147 |
+
"learning_rate": 4.2197986577181206e-05,
|
1148 |
+
"loss": 1.0358,
|
1149 |
+
"step": 190
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 1.28,
|
1153 |
+
"learning_rate": 4.2156040268456376e-05,
|
1154 |
+
"loss": 1.0029,
|
1155 |
+
"step": 191
|
1156 |
+
},
|
1157 |
+
{
|
1158 |
+
"epoch": 1.28,
|
1159 |
+
"learning_rate": 4.2114093959731546e-05,
|
1160 |
+
"loss": 0.9662,
|
1161 |
+
"step": 192
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 1.29,
|
1165 |
+
"learning_rate": 4.2072147651006716e-05,
|
1166 |
+
"loss": 0.9887,
|
1167 |
+
"step": 193
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 1.3,
|
1171 |
+
"learning_rate": 4.2030201342281886e-05,
|
1172 |
+
"loss": 0.9726,
|
1173 |
+
"step": 194
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 1.3,
|
1177 |
+
"learning_rate": 4.198825503355705e-05,
|
1178 |
+
"loss": 1.064,
|
1179 |
+
"step": 195
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 1.31,
|
1183 |
+
"learning_rate": 4.194630872483222e-05,
|
1184 |
+
"loss": 1.0207,
|
1185 |
+
"step": 196
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 1.32,
|
1189 |
+
"learning_rate": 4.190436241610738e-05,
|
1190 |
+
"loss": 1.0091,
|
1191 |
+
"step": 197
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 1.32,
|
1195 |
+
"learning_rate": 4.186241610738255e-05,
|
1196 |
+
"loss": 1.0282,
|
1197 |
+
"step": 198
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"epoch": 1.33,
|
1201 |
+
"learning_rate": 4.1820469798657716e-05,
|
1202 |
+
"loss": 1.0127,
|
1203 |
+
"step": 199
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"epoch": 1.34,
|
1207 |
+
"learning_rate": 4.1778523489932886e-05,
|
1208 |
+
"loss": 1.0243,
|
1209 |
+
"step": 200
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 1.34,
|
1213 |
+
"learning_rate": 4.1736577181208055e-05,
|
1214 |
+
"loss": 1.0646,
|
1215 |
+
"step": 201
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"epoch": 1.35,
|
1219 |
+
"learning_rate": 4.1694630872483225e-05,
|
1220 |
+
"loss": 0.9856,
|
1221 |
+
"step": 202
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 1.36,
|
1225 |
+
"learning_rate": 4.1652684563758395e-05,
|
1226 |
+
"loss": 1.0238,
|
1227 |
+
"step": 203
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 1.36,
|
1231 |
+
"learning_rate": 4.161073825503356e-05,
|
1232 |
+
"loss": 1.09,
|
1233 |
+
"step": 204
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 1.37,
|
1237 |
+
"learning_rate": 4.156879194630873e-05,
|
1238 |
+
"loss": 0.9666,
|
1239 |
+
"step": 205
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 1.38,
|
1243 |
+
"learning_rate": 4.152684563758389e-05,
|
1244 |
+
"loss": 1.0156,
|
1245 |
+
"step": 206
|
1246 |
+
},
|
1247 |
+
{
|
1248 |
+
"epoch": 1.38,
|
1249 |
+
"learning_rate": 4.148489932885906e-05,
|
1250 |
+
"loss": 1.0441,
|
1251 |
+
"step": 207
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 1.39,
|
1255 |
+
"learning_rate": 4.144295302013423e-05,
|
1256 |
+
"loss": 1.1158,
|
1257 |
+
"step": 208
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"epoch": 1.4,
|
1261 |
+
"learning_rate": 4.1401006711409395e-05,
|
1262 |
+
"loss": 1.1311,
|
1263 |
+
"step": 209
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 1.4,
|
1267 |
+
"learning_rate": 4.135906040268457e-05,
|
1268 |
+
"loss": 1.1143,
|
1269 |
+
"step": 210
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 1.41,
|
1273 |
+
"learning_rate": 4.1317114093959735e-05,
|
1274 |
+
"loss": 1.0636,
|
1275 |
+
"step": 211
|
1276 |
+
},
|
1277 |
+
{
|
1278 |
+
"epoch": 1.42,
|
1279 |
+
"learning_rate": 4.1275167785234905e-05,
|
1280 |
+
"loss": 1.0763,
|
1281 |
+
"step": 212
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"epoch": 1.42,
|
1285 |
+
"learning_rate": 4.123322147651007e-05,
|
1286 |
+
"loss": 0.94,
|
1287 |
+
"step": 213
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 1.43,
|
1291 |
+
"learning_rate": 4.119127516778524e-05,
|
1292 |
+
"loss": 1.0561,
|
1293 |
+
"step": 214
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 1.44,
|
1297 |
+
"learning_rate": 4.11493288590604e-05,
|
1298 |
+
"loss": 1.0693,
|
1299 |
+
"step": 215
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"epoch": 1.44,
|
1303 |
+
"learning_rate": 4.110738255033557e-05,
|
1304 |
+
"loss": 1.1091,
|
1305 |
+
"step": 216
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 1.45,
|
1309 |
+
"learning_rate": 4.106543624161074e-05,
|
1310 |
+
"loss": 0.9472,
|
1311 |
+
"step": 217
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 1.46,
|
1315 |
+
"learning_rate": 4.1023489932885904e-05,
|
1316 |
+
"loss": 1.0918,
|
1317 |
+
"step": 218
|
1318 |
+
},
|
1319 |
+
{
|
1320 |
+
"epoch": 1.46,
|
1321 |
+
"learning_rate": 4.098154362416108e-05,
|
1322 |
+
"loss": 1.135,
|
1323 |
+
"step": 219
|
1324 |
+
},
|
1325 |
+
{
|
1326 |
+
"epoch": 1.47,
|
1327 |
+
"learning_rate": 4.0939597315436244e-05,
|
1328 |
+
"loss": 1.215,
|
1329 |
+
"step": 220
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 1.48,
|
1333 |
+
"learning_rate": 4.0897651006711414e-05,
|
1334 |
+
"loss": 1.0823,
|
1335 |
+
"step": 221
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 1.48,
|
1339 |
+
"learning_rate": 4.085570469798658e-05,
|
1340 |
+
"loss": 1.0458,
|
1341 |
+
"step": 222
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"epoch": 1.49,
|
1345 |
+
"learning_rate": 4.081375838926175e-05,
|
1346 |
+
"loss": 1.0106,
|
1347 |
+
"step": 223
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 1.5,
|
1351 |
+
"learning_rate": 4.077181208053692e-05,
|
1352 |
+
"loss": 1.0731,
|
1353 |
+
"step": 224
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 1.5,
|
1357 |
+
"learning_rate": 4.072986577181208e-05,
|
1358 |
+
"loss": 1.0038,
|
1359 |
+
"step": 225
|
1360 |
+
},
|
1361 |
+
{
|
1362 |
+
"epoch": 1.51,
|
1363 |
+
"learning_rate": 4.068791946308725e-05,
|
1364 |
+
"loss": 0.9899,
|
1365 |
+
"step": 226
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"epoch": 1.52,
|
1369 |
+
"learning_rate": 4.064597315436241e-05,
|
1370 |
+
"loss": 1.0594,
|
1371 |
+
"step": 227
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"epoch": 1.52,
|
1375 |
+
"learning_rate": 4.060402684563759e-05,
|
1376 |
+
"loss": 1.0711,
|
1377 |
+
"step": 228
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 1.53,
|
1381 |
+
"learning_rate": 4.056208053691275e-05,
|
1382 |
+
"loss": 1.0418,
|
1383 |
+
"step": 229
|
1384 |
+
},
|
1385 |
+
{
|
1386 |
+
"epoch": 1.54,
|
1387 |
+
"learning_rate": 4.052013422818792e-05,
|
1388 |
+
"loss": 1.126,
|
1389 |
+
"step": 230
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 1.54,
|
1393 |
+
"learning_rate": 4.047818791946309e-05,
|
1394 |
+
"loss": 0.9917,
|
1395 |
+
"step": 231
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 1.55,
|
1399 |
+
"learning_rate": 4.0436241610738256e-05,
|
1400 |
+
"loss": 1.0509,
|
1401 |
+
"step": 232
|
1402 |
+
},
|
1403 |
+
{
|
1404 |
+
"epoch": 1.56,
|
1405 |
+
"learning_rate": 4.0394295302013426e-05,
|
1406 |
+
"loss": 1.0557,
|
1407 |
+
"step": 233
|
1408 |
+
},
|
1409 |
+
{
|
1410 |
+
"epoch": 1.56,
|
1411 |
+
"learning_rate": 4.035234899328859e-05,
|
1412 |
+
"loss": 1.0436,
|
1413 |
+
"step": 234
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"epoch": 1.57,
|
1417 |
+
"learning_rate": 4.031040268456376e-05,
|
1418 |
+
"loss": 0.9919,
|
1419 |
+
"step": 235
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 1.58,
|
1423 |
+
"learning_rate": 4.026845637583892e-05,
|
1424 |
+
"loss": 1.0404,
|
1425 |
+
"step": 236
|
1426 |
+
},
|
1427 |
+
{
|
1428 |
+
"epoch": 1.58,
|
1429 |
+
"learning_rate": 4.02265100671141e-05,
|
1430 |
+
"loss": 0.9761,
|
1431 |
+
"step": 237
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 1.59,
|
1435 |
+
"learning_rate": 4.018456375838926e-05,
|
1436 |
+
"loss": 1.0817,
|
1437 |
+
"step": 238
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 1.6,
|
1441 |
+
"learning_rate": 4.014261744966443e-05,
|
1442 |
+
"loss": 1.0359,
|
1443 |
+
"step": 239
|
1444 |
+
},
|
1445 |
+
{
|
1446 |
+
"epoch": 1.6,
|
1447 |
+
"learning_rate": 4.01006711409396e-05,
|
1448 |
+
"loss": 1.1567,
|
1449 |
+
"step": 240
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 1.61,
|
1453 |
+
"learning_rate": 4.0058724832214765e-05,
|
1454 |
+
"loss": 1.1174,
|
1455 |
+
"step": 241
|
1456 |
+
},
|
1457 |
+
{
|
1458 |
+
"epoch": 1.62,
|
1459 |
+
"learning_rate": 4.0016778523489935e-05,
|
1460 |
+
"loss": 1.0707,
|
1461 |
+
"step": 242
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"epoch": 1.62,
|
1465 |
+
"learning_rate": 3.99748322147651e-05,
|
1466 |
+
"loss": 1.0341,
|
1467 |
+
"step": 243
|
1468 |
+
},
|
1469 |
+
{
|
1470 |
+
"epoch": 1.63,
|
1471 |
+
"learning_rate": 3.993288590604027e-05,
|
1472 |
+
"loss": 1.0668,
|
1473 |
+
"step": 244
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 1.64,
|
1477 |
+
"learning_rate": 3.989093959731544e-05,
|
1478 |
+
"loss": 1.1055,
|
1479 |
+
"step": 245
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 1.64,
|
1483 |
+
"learning_rate": 3.984899328859061e-05,
|
1484 |
+
"loss": 0.9733,
|
1485 |
+
"step": 246
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"epoch": 1.65,
|
1489 |
+
"learning_rate": 3.980704697986578e-05,
|
1490 |
+
"loss": 1.0354,
|
1491 |
+
"step": 247
|
1492 |
+
},
|
1493 |
+
{
|
1494 |
+
"epoch": 1.66,
|
1495 |
+
"learning_rate": 3.976510067114094e-05,
|
1496 |
+
"loss": 1.0075,
|
1497 |
+
"step": 248
|
1498 |
+
},
|
1499 |
+
{
|
1500 |
+
"epoch": 1.66,
|
1501 |
+
"learning_rate": 3.972315436241611e-05,
|
1502 |
+
"loss": 1.0697,
|
1503 |
+
"step": 249
|
1504 |
+
},
|
1505 |
+
{
|
1506 |
+
"epoch": 1.67,
|
1507 |
+
"learning_rate": 3.9681208053691275e-05,
|
1508 |
+
"loss": 1.0748,
|
1509 |
+
"step": 250
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"epoch": 1.68,
|
1513 |
+
"learning_rate": 3.9639261744966445e-05,
|
1514 |
+
"loss": 1.0527,
|
1515 |
+
"step": 251
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 1.68,
|
1519 |
+
"learning_rate": 3.959731543624161e-05,
|
1520 |
+
"loss": 1.0426,
|
1521 |
+
"step": 252
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 1.69,
|
1525 |
+
"learning_rate": 3.955536912751678e-05,
|
1526 |
+
"loss": 0.9371,
|
1527 |
+
"step": 253
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 1.7,
|
1531 |
+
"learning_rate": 3.951342281879195e-05,
|
1532 |
+
"loss": 1.0303,
|
1533 |
+
"step": 254
|
1534 |
+
},
|
1535 |
+
{
|
1536 |
+
"epoch": 1.7,
|
1537 |
+
"learning_rate": 3.947147651006712e-05,
|
1538 |
+
"loss": 1.0596,
|
1539 |
+
"step": 255
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 1.71,
|
1543 |
+
"learning_rate": 3.942953020134229e-05,
|
1544 |
+
"loss": 1.1421,
|
1545 |
+
"step": 256
|
1546 |
+
},
|
1547 |
+
{
|
1548 |
+
"epoch": 1.72,
|
1549 |
+
"learning_rate": 3.938758389261745e-05,
|
1550 |
+
"loss": 1.0909,
|
1551 |
+
"step": 257
|
1552 |
+
},
|
1553 |
+
{
|
1554 |
+
"epoch": 1.72,
|
1555 |
+
"learning_rate": 3.934563758389262e-05,
|
1556 |
+
"loss": 1.0902,
|
1557 |
+
"step": 258
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 1.73,
|
1561 |
+
"learning_rate": 3.9303691275167784e-05,
|
1562 |
+
"loss": 1.1381,
|
1563 |
+
"step": 259
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 1.74,
|
1567 |
+
"learning_rate": 3.9261744966442954e-05,
|
1568 |
+
"loss": 1.1158,
|
1569 |
+
"step": 260
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 1.74,
|
1573 |
+
"learning_rate": 3.9219798657718124e-05,
|
1574 |
+
"loss": 1.0368,
|
1575 |
+
"step": 261
|
1576 |
+
},
|
1577 |
+
{
|
1578 |
+
"epoch": 1.75,
|
1579 |
+
"learning_rate": 3.917785234899329e-05,
|
1580 |
+
"loss": 1.0452,
|
1581 |
+
"step": 262
|
1582 |
+
},
|
1583 |
+
{
|
1584 |
+
"epoch": 1.76,
|
1585 |
+
"learning_rate": 3.9135906040268464e-05,
|
1586 |
+
"loss": 1.1253,
|
1587 |
+
"step": 263
|
1588 |
+
},
|
1589 |
+
{
|
1590 |
+
"epoch": 1.76,
|
1591 |
+
"learning_rate": 3.909395973154363e-05,
|
1592 |
+
"loss": 1.066,
|
1593 |
+
"step": 264
|
1594 |
+
},
|
1595 |
+
{
|
1596 |
+
"epoch": 1.77,
|
1597 |
+
"learning_rate": 3.90520134228188e-05,
|
1598 |
+
"loss": 0.997,
|
1599 |
+
"step": 265
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 1.78,
|
1603 |
+
"learning_rate": 3.901006711409396e-05,
|
1604 |
+
"loss": 1.168,
|
1605 |
+
"step": 266
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 1.78,
|
1609 |
+
"learning_rate": 3.896812080536913e-05,
|
1610 |
+
"loss": 1.0828,
|
1611 |
+
"step": 267
|
1612 |
+
},
|
1613 |
+
{
|
1614 |
+
"epoch": 1.79,
|
1615 |
+
"learning_rate": 3.89261744966443e-05,
|
1616 |
+
"loss": 0.9894,
|
1617 |
+
"step": 268
|
1618 |
+
},
|
1619 |
+
{
|
1620 |
+
"epoch": 1.8,
|
1621 |
+
"learning_rate": 3.888422818791946e-05,
|
1622 |
+
"loss": 1.0228,
|
1623 |
+
"step": 269
|
1624 |
+
},
|
1625 |
+
{
|
1626 |
+
"epoch": 1.8,
|
1627 |
+
"learning_rate": 3.884228187919463e-05,
|
1628 |
+
"loss": 1.0008,
|
1629 |
+
"step": 270
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 1.81,
|
1633 |
+
"learning_rate": 3.8800335570469796e-05,
|
1634 |
+
"loss": 1.1658,
|
1635 |
+
"step": 271
|
1636 |
+
},
|
1637 |
+
{
|
1638 |
+
"epoch": 1.82,
|
1639 |
+
"learning_rate": 3.875838926174497e-05,
|
1640 |
+
"loss": 1.0294,
|
1641 |
+
"step": 272
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 1.82,
|
1645 |
+
"learning_rate": 3.8716442953020136e-05,
|
1646 |
+
"loss": 1.0961,
|
1647 |
+
"step": 273
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 1.83,
|
1651 |
+
"learning_rate": 3.8674496644295306e-05,
|
1652 |
+
"loss": 1.056,
|
1653 |
+
"step": 274
|
1654 |
+
},
|
1655 |
+
{
|
1656 |
+
"epoch": 1.84,
|
1657 |
+
"learning_rate": 3.863255033557047e-05,
|
1658 |
+
"loss": 1.1555,
|
1659 |
+
"step": 275
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 1.84,
|
1663 |
+
"learning_rate": 3.859060402684564e-05,
|
1664 |
+
"loss": 1.0154,
|
1665 |
+
"step": 276
|
1666 |
+
},
|
1667 |
+
{
|
1668 |
+
"epoch": 1.85,
|
1669 |
+
"learning_rate": 3.854865771812081e-05,
|
1670 |
+
"loss": 1.1223,
|
1671 |
+
"step": 277
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"epoch": 1.86,
|
1675 |
+
"learning_rate": 3.850671140939597e-05,
|
1676 |
+
"loss": 1.024,
|
1677 |
+
"step": 278
|
1678 |
+
},
|
1679 |
+
{
|
1680 |
+
"epoch": 1.86,
|
1681 |
+
"learning_rate": 3.846476510067114e-05,
|
1682 |
+
"loss": 1.1126,
|
1683 |
+
"step": 279
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 1.87,
|
1687 |
+
"learning_rate": 3.8422818791946305e-05,
|
1688 |
+
"loss": 1.0596,
|
1689 |
+
"step": 280
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 1.88,
|
1693 |
+
"learning_rate": 3.838087248322148e-05,
|
1694 |
+
"loss": 0.9871,
|
1695 |
+
"step": 281
|
1696 |
+
},
|
1697 |
+
{
|
1698 |
+
"epoch": 1.88,
|
1699 |
+
"learning_rate": 3.8338926174496645e-05,
|
1700 |
+
"loss": 1.0154,
|
1701 |
+
"step": 282
|
1702 |
+
},
|
1703 |
+
{
|
1704 |
+
"epoch": 1.89,
|
1705 |
+
"learning_rate": 3.8296979865771815e-05,
|
1706 |
+
"loss": 1.0347,
|
1707 |
+
"step": 283
|
1708 |
+
},
|
1709 |
+
{
|
1710 |
+
"epoch": 1.9,
|
1711 |
+
"learning_rate": 3.8255033557046985e-05,
|
1712 |
+
"loss": 1.0645,
|
1713 |
+
"step": 284
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"epoch": 1.9,
|
1717 |
+
"learning_rate": 3.821308724832215e-05,
|
1718 |
+
"loss": 1.1103,
|
1719 |
+
"step": 285
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"epoch": 1.91,
|
1723 |
+
"learning_rate": 3.817114093959732e-05,
|
1724 |
+
"loss": 1.0555,
|
1725 |
+
"step": 286
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 1.92,
|
1729 |
+
"learning_rate": 3.812919463087248e-05,
|
1730 |
+
"loss": 1.0087,
|
1731 |
+
"step": 287
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 1.92,
|
1735 |
+
"learning_rate": 3.808724832214765e-05,
|
1736 |
+
"loss": 1.0094,
|
1737 |
+
"step": 288
|
1738 |
+
},
|
1739 |
+
{
|
1740 |
+
"epoch": 1.93,
|
1741 |
+
"learning_rate": 3.804530201342282e-05,
|
1742 |
+
"loss": 1.0472,
|
1743 |
+
"step": 289
|
1744 |
+
},
|
1745 |
+
{
|
1746 |
+
"epoch": 1.94,
|
1747 |
+
"learning_rate": 3.800335570469799e-05,
|
1748 |
+
"loss": 1.0593,
|
1749 |
+
"step": 290
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"epoch": 1.94,
|
1753 |
+
"learning_rate": 3.7961409395973154e-05,
|
1754 |
+
"loss": 0.9796,
|
1755 |
+
"step": 291
|
1756 |
+
},
|
1757 |
+
{
|
1758 |
+
"epoch": 1.95,
|
1759 |
+
"learning_rate": 3.7919463087248324e-05,
|
1760 |
+
"loss": 1.095,
|
1761 |
+
"step": 292
|
1762 |
+
},
|
1763 |
+
{
|
1764 |
+
"epoch": 1.96,
|
1765 |
+
"learning_rate": 3.7877516778523494e-05,
|
1766 |
+
"loss": 1.1117,
|
1767 |
+
"step": 293
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 1.96,
|
1771 |
+
"learning_rate": 3.783557046979866e-05,
|
1772 |
+
"loss": 1.0029,
|
1773 |
+
"step": 294
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 1.97,
|
1777 |
+
"learning_rate": 3.779362416107383e-05,
|
1778 |
+
"loss": 1.0608,
|
1779 |
+
"step": 295
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 1.98,
|
1783 |
+
"learning_rate": 3.775167785234899e-05,
|
1784 |
+
"loss": 0.9456,
|
1785 |
+
"step": 296
|
1786 |
+
},
|
1787 |
+
{
|
1788 |
+
"epoch": 1.98,
|
1789 |
+
"learning_rate": 3.770973154362416e-05,
|
1790 |
+
"loss": 1.0542,
|
1791 |
+
"step": 297
|
1792 |
+
},
|
1793 |
+
{
|
1794 |
+
"epoch": 1.99,
|
1795 |
+
"learning_rate": 3.766778523489933e-05,
|
1796 |
+
"loss": 1.1852,
|
1797 |
+
"step": 298
|
1798 |
+
},
|
1799 |
+
{
|
1800 |
+
"epoch": 2.0,
|
1801 |
+
"learning_rate": 3.76258389261745e-05,
|
1802 |
+
"loss": 1.1161,
|
1803 |
+
"step": 299
|
1804 |
+
},
|
1805 |
+
{
|
1806 |
+
"epoch": 2.0,
|
1807 |
+
"learning_rate": 3.758389261744967e-05,
|
1808 |
+
"loss": 0.6874,
|
1809 |
+
"step": 300
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 2.01,
|
1813 |
+
"learning_rate": 3.7541946308724834e-05,
|
1814 |
+
"loss": 0.2995,
|
1815 |
+
"step": 301
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 2.02,
|
1819 |
+
"learning_rate": 3.7500000000000003e-05,
|
1820 |
+
"loss": 0.3496,
|
1821 |
+
"step": 302
|
1822 |
+
},
|
1823 |
+
{
|
1824 |
+
"epoch": 2.02,
|
1825 |
+
"learning_rate": 3.745805369127517e-05,
|
1826 |
+
"loss": 0.3164,
|
1827 |
+
"step": 303
|
1828 |
+
},
|
1829 |
+
{
|
1830 |
+
"epoch": 2.03,
|
1831 |
+
"learning_rate": 3.741610738255034e-05,
|
1832 |
+
"loss": 0.3035,
|
1833 |
+
"step": 304
|
1834 |
+
},
|
1835 |
+
{
|
1836 |
+
"epoch": 2.04,
|
1837 |
+
"learning_rate": 3.7374161073825507e-05,
|
1838 |
+
"loss": 0.2868,
|
1839 |
+
"step": 305
|
1840 |
+
},
|
1841 |
+
{
|
1842 |
+
"epoch": 2.04,
|
1843 |
+
"learning_rate": 3.733221476510067e-05,
|
1844 |
+
"loss": 0.3521,
|
1845 |
+
"step": 306
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"epoch": 2.05,
|
1849 |
+
"learning_rate": 3.7290268456375846e-05,
|
1850 |
+
"loss": 0.3126,
|
1851 |
+
"step": 307
|
1852 |
+
},
|
1853 |
+
{
|
1854 |
+
"epoch": 2.06,
|
1855 |
+
"learning_rate": 3.724832214765101e-05,
|
1856 |
+
"loss": 0.3399,
|
1857 |
+
"step": 308
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 2.06,
|
1861 |
+
"learning_rate": 3.720637583892618e-05,
|
1862 |
+
"loss": 0.2909,
|
1863 |
+
"step": 309
|
1864 |
+
},
|
1865 |
+
{
|
1866 |
+
"epoch": 2.07,
|
1867 |
+
"learning_rate": 3.716442953020134e-05,
|
1868 |
+
"loss": 0.3073,
|
1869 |
+
"step": 310
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 2.08,
|
1873 |
+
"learning_rate": 3.712248322147651e-05,
|
1874 |
+
"loss": 0.2761,
|
1875 |
+
"step": 311
|
1876 |
+
},
|
1877 |
+
{
|
1878 |
+
"epoch": 2.08,
|
1879 |
+
"learning_rate": 3.7080536912751676e-05,
|
1880 |
+
"loss": 0.3051,
|
1881 |
+
"step": 312
|
1882 |
+
},
|
1883 |
+
{
|
1884 |
+
"epoch": 2.09,
|
1885 |
+
"learning_rate": 3.7038590604026846e-05,
|
1886 |
+
"loss": 0.3028,
|
1887 |
+
"step": 313
|
1888 |
+
},
|
1889 |
+
{
|
1890 |
+
"epoch": 2.1,
|
1891 |
+
"learning_rate": 3.6996644295302016e-05,
|
1892 |
+
"loss": 0.2823,
|
1893 |
+
"step": 314
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"epoch": 2.1,
|
1897 |
+
"learning_rate": 3.695469798657718e-05,
|
1898 |
+
"loss": 0.2829,
|
1899 |
+
"step": 315
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 2.11,
|
1903 |
+
"learning_rate": 3.6912751677852356e-05,
|
1904 |
+
"loss": 0.2801,
|
1905 |
+
"step": 316
|
1906 |
+
},
|
1907 |
+
{
|
1908 |
+
"epoch": 2.12,
|
1909 |
+
"learning_rate": 3.687080536912752e-05,
|
1910 |
+
"loss": 0.3159,
|
1911 |
+
"step": 317
|
1912 |
+
},
|
1913 |
+
{
|
1914 |
+
"epoch": 2.12,
|
1915 |
+
"learning_rate": 3.682885906040269e-05,
|
1916 |
+
"loss": 0.3164,
|
1917 |
+
"step": 318
|
1918 |
+
},
|
1919 |
+
{
|
1920 |
+
"epoch": 2.13,
|
1921 |
+
"learning_rate": 3.678691275167785e-05,
|
1922 |
+
"loss": 0.2789,
|
1923 |
+
"step": 319
|
1924 |
+
},
|
1925 |
+
{
|
1926 |
+
"epoch": 2.14,
|
1927 |
+
"learning_rate": 3.674496644295302e-05,
|
1928 |
+
"loss": 0.3364,
|
1929 |
+
"step": 320
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"epoch": 2.14,
|
1933 |
+
"learning_rate": 3.670302013422819e-05,
|
1934 |
+
"loss": 0.3064,
|
1935 |
+
"step": 321
|
1936 |
+
},
|
1937 |
+
{
|
1938 |
+
"epoch": 2.15,
|
1939 |
+
"learning_rate": 3.6661073825503355e-05,
|
1940 |
+
"loss": 0.3183,
|
1941 |
+
"step": 322
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 2.16,
|
1945 |
+
"learning_rate": 3.6619127516778525e-05,
|
1946 |
+
"loss": 0.3108,
|
1947 |
+
"step": 323
|
1948 |
+
},
|
1949 |
+
{
|
1950 |
+
"epoch": 2.16,
|
1951 |
+
"learning_rate": 3.6577181208053695e-05,
|
1952 |
+
"loss": 0.2877,
|
1953 |
+
"step": 324
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"epoch": 2.17,
|
1957 |
+
"learning_rate": 3.6535234899328865e-05,
|
1958 |
+
"loss": 0.2948,
|
1959 |
+
"step": 325
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"epoch": 2.18,
|
1963 |
+
"learning_rate": 3.649328859060403e-05,
|
1964 |
+
"loss": 0.3345,
|
1965 |
+
"step": 326
|
1966 |
+
},
|
1967 |
+
{
|
1968 |
+
"epoch": 2.18,
|
1969 |
+
"learning_rate": 3.64513422818792e-05,
|
1970 |
+
"loss": 0.3397,
|
1971 |
+
"step": 327
|
1972 |
+
},
|
1973 |
+
{
|
1974 |
+
"epoch": 2.19,
|
1975 |
+
"learning_rate": 3.640939597315436e-05,
|
1976 |
+
"loss": 0.2967,
|
1977 |
+
"step": 328
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"epoch": 2.2,
|
1981 |
+
"learning_rate": 3.636744966442953e-05,
|
1982 |
+
"loss": 0.2848,
|
1983 |
+
"step": 329
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 2.2,
|
1987 |
+
"learning_rate": 3.63255033557047e-05,
|
1988 |
+
"loss": 0.3183,
|
1989 |
+
"step": 330
|
1990 |
+
},
|
1991 |
+
{
|
1992 |
+
"epoch": 2.21,
|
1993 |
+
"learning_rate": 3.6283557046979864e-05,
|
1994 |
+
"loss": 0.3042,
|
1995 |
+
"step": 331
|
1996 |
+
},
|
1997 |
+
{
|
1998 |
+
"epoch": 2.22,
|
1999 |
+
"learning_rate": 3.6241610738255034e-05,
|
2000 |
+
"loss": 0.3128,
|
2001 |
+
"step": 332
|
2002 |
+
},
|
2003 |
+
{
|
2004 |
+
"epoch": 2.22,
|
2005 |
+
"learning_rate": 3.6199664429530204e-05,
|
2006 |
+
"loss": 0.3144,
|
2007 |
+
"step": 333
|
2008 |
+
},
|
2009 |
+
{
|
2010 |
+
"epoch": 2.23,
|
2011 |
+
"learning_rate": 3.6157718120805374e-05,
|
2012 |
+
"loss": 0.288,
|
2013 |
+
"step": 334
|
2014 |
+
},
|
2015 |
+
{
|
2016 |
+
"epoch": 2.24,
|
2017 |
+
"learning_rate": 3.611577181208054e-05,
|
2018 |
+
"loss": 0.305,
|
2019 |
+
"step": 335
|
2020 |
+
},
|
2021 |
+
{
|
2022 |
+
"epoch": 2.24,
|
2023 |
+
"learning_rate": 3.607382550335571e-05,
|
2024 |
+
"loss": 0.3115,
|
2025 |
+
"step": 336
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 2.25,
|
2029 |
+
"learning_rate": 3.603187919463088e-05,
|
2030 |
+
"loss": 0.3321,
|
2031 |
+
"step": 337
|
2032 |
+
},
|
2033 |
+
{
|
2034 |
+
"epoch": 2.26,
|
2035 |
+
"learning_rate": 3.598993288590604e-05,
|
2036 |
+
"loss": 0.2799,
|
2037 |
+
"step": 338
|
2038 |
+
},
|
2039 |
+
{
|
2040 |
+
"epoch": 2.26,
|
2041 |
+
"learning_rate": 3.594798657718121e-05,
|
2042 |
+
"loss": 0.2965,
|
2043 |
+
"step": 339
|
2044 |
+
},
|
2045 |
+
{
|
2046 |
+
"epoch": 2.27,
|
2047 |
+
"learning_rate": 3.5906040268456373e-05,
|
2048 |
+
"loss": 0.3046,
|
2049 |
+
"step": 340
|
2050 |
+
},
|
2051 |
+
{
|
2052 |
+
"epoch": 2.28,
|
2053 |
+
"learning_rate": 3.5864093959731543e-05,
|
2054 |
+
"loss": 0.2886,
|
2055 |
+
"step": 341
|
2056 |
+
},
|
2057 |
+
{
|
2058 |
+
"epoch": 2.28,
|
2059 |
+
"learning_rate": 3.582214765100671e-05,
|
2060 |
+
"loss": 0.3059,
|
2061 |
+
"step": 342
|
2062 |
+
},
|
2063 |
+
{
|
2064 |
+
"epoch": 2.29,
|
2065 |
+
"learning_rate": 3.578020134228188e-05,
|
2066 |
+
"loss": 0.3201,
|
2067 |
+
"step": 343
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 2.3,
|
2071 |
+
"learning_rate": 3.5738255033557046e-05,
|
2072 |
+
"loss": 0.2766,
|
2073 |
+
"step": 344
|
2074 |
+
},
|
2075 |
+
{
|
2076 |
+
"epoch": 2.3,
|
2077 |
+
"learning_rate": 3.5696308724832216e-05,
|
2078 |
+
"loss": 0.2934,
|
2079 |
+
"step": 345
|
2080 |
+
},
|
2081 |
+
{
|
2082 |
+
"epoch": 2.31,
|
2083 |
+
"learning_rate": 3.5654362416107386e-05,
|
2084 |
+
"loss": 0.2731,
|
2085 |
+
"step": 346
|
2086 |
+
},
|
2087 |
+
{
|
2088 |
+
"epoch": 2.32,
|
2089 |
+
"learning_rate": 3.561241610738255e-05,
|
2090 |
+
"loss": 0.2676,
|
2091 |
+
"step": 347
|
2092 |
+
},
|
2093 |
+
{
|
2094 |
+
"epoch": 2.32,
|
2095 |
+
"learning_rate": 3.557046979865772e-05,
|
2096 |
+
"loss": 0.2982,
|
2097 |
+
"step": 348
|
2098 |
+
},
|
2099 |
+
{
|
2100 |
+
"epoch": 2.33,
|
2101 |
+
"learning_rate": 3.552852348993288e-05,
|
2102 |
+
"loss": 0.2929,
|
2103 |
+
"step": 349
|
2104 |
+
},
|
2105 |
+
{
|
2106 |
+
"epoch": 2.34,
|
2107 |
+
"learning_rate": 3.548657718120805e-05,
|
2108 |
+
"loss": 0.2891,
|
2109 |
+
"step": 350
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 2.34,
|
2113 |
+
"learning_rate": 3.544463087248322e-05,
|
2114 |
+
"loss": 0.2792,
|
2115 |
+
"step": 351
|
2116 |
+
},
|
2117 |
+
{
|
2118 |
+
"epoch": 2.35,
|
2119 |
+
"learning_rate": 3.540268456375839e-05,
|
2120 |
+
"loss": 0.328,
|
2121 |
+
"step": 352
|
2122 |
+
},
|
2123 |
+
{
|
2124 |
+
"epoch": 2.36,
|
2125 |
+
"learning_rate": 3.536073825503356e-05,
|
2126 |
+
"loss": 0.2943,
|
2127 |
+
"step": 353
|
2128 |
+
},
|
2129 |
+
{
|
2130 |
+
"epoch": 2.36,
|
2131 |
+
"learning_rate": 3.5318791946308726e-05,
|
2132 |
+
"loss": 0.2564,
|
2133 |
+
"step": 354
|
2134 |
+
},
|
2135 |
+
{
|
2136 |
+
"epoch": 2.37,
|
2137 |
+
"learning_rate": 3.5276845637583896e-05,
|
2138 |
+
"loss": 0.2757,
|
2139 |
+
"step": 355
|
2140 |
+
},
|
2141 |
+
{
|
2142 |
+
"epoch": 2.38,
|
2143 |
+
"learning_rate": 3.523489932885906e-05,
|
2144 |
+
"loss": 0.3344,
|
2145 |
+
"step": 356
|
2146 |
+
},
|
2147 |
+
{
|
2148 |
+
"epoch": 2.38,
|
2149 |
+
"learning_rate": 3.519295302013423e-05,
|
2150 |
+
"loss": 0.2906,
|
2151 |
+
"step": 357
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 2.39,
|
2155 |
+
"learning_rate": 3.51510067114094e-05,
|
2156 |
+
"loss": 0.2798,
|
2157 |
+
"step": 358
|
2158 |
+
},
|
2159 |
+
{
|
2160 |
+
"epoch": 2.4,
|
2161 |
+
"learning_rate": 3.510906040268457e-05,
|
2162 |
+
"loss": 0.2937,
|
2163 |
+
"step": 359
|
2164 |
+
},
|
2165 |
+
{
|
2166 |
+
"epoch": 2.4,
|
2167 |
+
"learning_rate": 3.506711409395974e-05,
|
2168 |
+
"loss": 0.2893,
|
2169 |
+
"step": 360
|
2170 |
+
},
|
2171 |
+
{
|
2172 |
+
"epoch": 2.41,
|
2173 |
+
"learning_rate": 3.50251677852349e-05,
|
2174 |
+
"loss": 0.299,
|
2175 |
+
"step": 361
|
2176 |
+
},
|
2177 |
+
{
|
2178 |
+
"epoch": 2.42,
|
2179 |
+
"learning_rate": 3.498322147651007e-05,
|
2180 |
+
"loss": 0.3113,
|
2181 |
+
"step": 362
|
2182 |
+
},
|
2183 |
+
{
|
2184 |
+
"epoch": 2.42,
|
2185 |
+
"learning_rate": 3.4941275167785235e-05,
|
2186 |
+
"loss": 0.3086,
|
2187 |
+
"step": 363
|
2188 |
+
},
|
2189 |
+
{
|
2190 |
+
"epoch": 2.43,
|
2191 |
+
"learning_rate": 3.4899328859060405e-05,
|
2192 |
+
"loss": 0.3392,
|
2193 |
+
"step": 364
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 2.44,
|
2197 |
+
"learning_rate": 3.485738255033557e-05,
|
2198 |
+
"loss": 0.2652,
|
2199 |
+
"step": 365
|
2200 |
+
},
|
2201 |
+
{
|
2202 |
+
"epoch": 2.44,
|
2203 |
+
"learning_rate": 3.481543624161074e-05,
|
2204 |
+
"loss": 0.2882,
|
2205 |
+
"step": 366
|
2206 |
+
},
|
2207 |
+
{
|
2208 |
+
"epoch": 2.45,
|
2209 |
+
"learning_rate": 3.477348993288591e-05,
|
2210 |
+
"loss": 0.2948,
|
2211 |
+
"step": 367
|
2212 |
+
},
|
2213 |
+
{
|
2214 |
+
"epoch": 2.46,
|
2215 |
+
"learning_rate": 3.473154362416108e-05,
|
2216 |
+
"loss": 0.2739,
|
2217 |
+
"step": 368
|
2218 |
+
},
|
2219 |
+
{
|
2220 |
+
"epoch": 2.46,
|
2221 |
+
"learning_rate": 3.468959731543625e-05,
|
2222 |
+
"loss": 0.2882,
|
2223 |
+
"step": 369
|
2224 |
+
},
|
2225 |
+
{
|
2226 |
+
"epoch": 2.47,
|
2227 |
+
"learning_rate": 3.464765100671141e-05,
|
2228 |
+
"loss": 0.3521,
|
2229 |
+
"step": 370
|
2230 |
+
},
|
2231 |
+
{
|
2232 |
+
"epoch": 2.48,
|
2233 |
+
"learning_rate": 3.460570469798658e-05,
|
2234 |
+
"loss": 0.2963,
|
2235 |
+
"step": 371
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 2.48,
|
2239 |
+
"learning_rate": 3.4563758389261744e-05,
|
2240 |
+
"loss": 0.2624,
|
2241 |
+
"step": 372
|
2242 |
+
},
|
2243 |
+
{
|
2244 |
+
"epoch": 2.49,
|
2245 |
+
"learning_rate": 3.4521812080536914e-05,
|
2246 |
+
"loss": 0.2858,
|
2247 |
+
"step": 373
|
2248 |
+
},
|
2249 |
+
{
|
2250 |
+
"epoch": 2.5,
|
2251 |
+
"learning_rate": 3.4479865771812084e-05,
|
2252 |
+
"loss": 0.3327,
|
2253 |
+
"step": 374
|
2254 |
+
},
|
2255 |
+
{
|
2256 |
+
"epoch": 2.5,
|
2257 |
+
"learning_rate": 3.443791946308725e-05,
|
2258 |
+
"loss": 0.3024,
|
2259 |
+
"step": 375
|
2260 |
+
},
|
2261 |
+
{
|
2262 |
+
"epoch": 2.51,
|
2263 |
+
"learning_rate": 3.439597315436242e-05,
|
2264 |
+
"loss": 0.308,
|
2265 |
+
"step": 376
|
2266 |
+
},
|
2267 |
+
{
|
2268 |
+
"epoch": 2.52,
|
2269 |
+
"learning_rate": 3.435402684563759e-05,
|
2270 |
+
"loss": 0.2932,
|
2271 |
+
"step": 377
|
2272 |
+
},
|
2273 |
+
{
|
2274 |
+
"epoch": 2.52,
|
2275 |
+
"learning_rate": 3.431208053691276e-05,
|
2276 |
+
"loss": 0.324,
|
2277 |
+
"step": 378
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 2.53,
|
2281 |
+
"learning_rate": 3.427013422818792e-05,
|
2282 |
+
"loss": 0.325,
|
2283 |
+
"step": 379
|
2284 |
+
},
|
2285 |
+
{
|
2286 |
+
"epoch": 2.54,
|
2287 |
+
"learning_rate": 3.422818791946309e-05,
|
2288 |
+
"loss": 0.3378,
|
2289 |
+
"step": 380
|
2290 |
+
},
|
2291 |
+
{
|
2292 |
+
"epoch": 2.54,
|
2293 |
+
"learning_rate": 3.418624161073825e-05,
|
2294 |
+
"loss": 0.3061,
|
2295 |
+
"step": 381
|
2296 |
+
},
|
2297 |
+
{
|
2298 |
+
"epoch": 2.55,
|
2299 |
+
"learning_rate": 3.414429530201342e-05,
|
2300 |
+
"loss": 0.2856,
|
2301 |
+
"step": 382
|
2302 |
+
},
|
2303 |
+
{
|
2304 |
+
"epoch": 2.56,
|
2305 |
+
"learning_rate": 3.410234899328859e-05,
|
2306 |
+
"loss": 0.3567,
|
2307 |
+
"step": 383
|
2308 |
+
},
|
2309 |
+
{
|
2310 |
+
"epoch": 2.56,
|
2311 |
+
"learning_rate": 3.4060402684563756e-05,
|
2312 |
+
"loss": 0.3063,
|
2313 |
+
"step": 384
|
2314 |
+
},
|
2315 |
+
{
|
2316 |
+
"epoch": 2.57,
|
2317 |
+
"learning_rate": 3.4018456375838926e-05,
|
2318 |
+
"loss": 0.2806,
|
2319 |
+
"step": 385
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 2.58,
|
2323 |
+
"learning_rate": 3.3976510067114096e-05,
|
2324 |
+
"loss": 0.3239,
|
2325 |
+
"step": 386
|
2326 |
+
},
|
2327 |
+
{
|
2328 |
+
"epoch": 2.58,
|
2329 |
+
"learning_rate": 3.3934563758389266e-05,
|
2330 |
+
"loss": 0.3089,
|
2331 |
+
"step": 387
|
2332 |
+
},
|
2333 |
+
{
|
2334 |
+
"epoch": 2.59,
|
2335 |
+
"learning_rate": 3.389261744966443e-05,
|
2336 |
+
"loss": 0.3388,
|
2337 |
+
"step": 388
|
2338 |
+
},
|
2339 |
+
{
|
2340 |
+
"epoch": 2.6,
|
2341 |
+
"learning_rate": 3.38506711409396e-05,
|
2342 |
+
"loss": 0.2863,
|
2343 |
+
"step": 389
|
2344 |
+
},
|
2345 |
+
{
|
2346 |
+
"epoch": 2.6,
|
2347 |
+
"learning_rate": 3.380872483221477e-05,
|
2348 |
+
"loss": 0.2794,
|
2349 |
+
"step": 390
|
2350 |
+
},
|
2351 |
+
{
|
2352 |
+
"epoch": 2.61,
|
2353 |
+
"learning_rate": 3.376677852348993e-05,
|
2354 |
+
"loss": 0.3331,
|
2355 |
+
"step": 391
|
2356 |
+
},
|
2357 |
+
{
|
2358 |
+
"epoch": 2.62,
|
2359 |
+
"learning_rate": 3.37248322147651e-05,
|
2360 |
+
"loss": 0.3712,
|
2361 |
+
"step": 392
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 2.62,
|
2365 |
+
"learning_rate": 3.3682885906040266e-05,
|
2366 |
+
"loss": 0.2779,
|
2367 |
+
"step": 393
|
2368 |
+
},
|
2369 |
+
{
|
2370 |
+
"epoch": 2.63,
|
2371 |
+
"learning_rate": 3.3640939597315436e-05,
|
2372 |
+
"loss": 0.3076,
|
2373 |
+
"step": 394
|
2374 |
+
},
|
2375 |
+
{
|
2376 |
+
"epoch": 2.64,
|
2377 |
+
"learning_rate": 3.3598993288590605e-05,
|
2378 |
+
"loss": 0.3019,
|
2379 |
+
"step": 395
|
2380 |
+
},
|
2381 |
+
{
|
2382 |
+
"epoch": 2.64,
|
2383 |
+
"learning_rate": 3.3557046979865775e-05,
|
2384 |
+
"loss": 0.3249,
|
2385 |
+
"step": 396
|
2386 |
+
},
|
2387 |
+
{
|
2388 |
+
"epoch": 2.65,
|
2389 |
+
"learning_rate": 3.3515100671140945e-05,
|
2390 |
+
"loss": 0.3447,
|
2391 |
+
"step": 397
|
2392 |
+
},
|
2393 |
+
{
|
2394 |
+
"epoch": 2.66,
|
2395 |
+
"learning_rate": 3.347315436241611e-05,
|
2396 |
+
"loss": 0.3528,
|
2397 |
+
"step": 398
|
2398 |
+
},
|
2399 |
+
{
|
2400 |
+
"epoch": 2.66,
|
2401 |
+
"learning_rate": 3.343120805369128e-05,
|
2402 |
+
"loss": 0.3519,
|
2403 |
+
"step": 399
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 2.67,
|
2407 |
+
"learning_rate": 3.338926174496644e-05,
|
2408 |
+
"loss": 0.3262,
|
2409 |
+
"step": 400
|
2410 |
+
},
|
2411 |
+
{
|
2412 |
+
"epoch": 2.68,
|
2413 |
+
"learning_rate": 3.334731543624161e-05,
|
2414 |
+
"loss": 0.3264,
|
2415 |
+
"step": 401
|
2416 |
+
},
|
2417 |
+
{
|
2418 |
+
"epoch": 2.68,
|
2419 |
+
"learning_rate": 3.3305369127516775e-05,
|
2420 |
+
"loss": 0.295,
|
2421 |
+
"step": 402
|
2422 |
+
},
|
2423 |
+
{
|
2424 |
+
"epoch": 2.69,
|
2425 |
+
"learning_rate": 3.326342281879195e-05,
|
2426 |
+
"loss": 0.2763,
|
2427 |
+
"step": 403
|
2428 |
+
},
|
2429 |
+
{
|
2430 |
+
"epoch": 2.7,
|
2431 |
+
"learning_rate": 3.3221476510067115e-05,
|
2432 |
+
"loss": 0.2954,
|
2433 |
+
"step": 404
|
2434 |
+
},
|
2435 |
+
{
|
2436 |
+
"epoch": 2.7,
|
2437 |
+
"learning_rate": 3.3179530201342285e-05,
|
2438 |
+
"loss": 0.3035,
|
2439 |
+
"step": 405
|
2440 |
+
},
|
2441 |
+
{
|
2442 |
+
"epoch": 2.71,
|
2443 |
+
"learning_rate": 3.3137583892617455e-05,
|
2444 |
+
"loss": 0.3123,
|
2445 |
+
"step": 406
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 2.72,
|
2449 |
+
"learning_rate": 3.309563758389262e-05,
|
2450 |
+
"loss": 0.3183,
|
2451 |
+
"step": 407
|
2452 |
+
},
|
2453 |
+
{
|
2454 |
+
"epoch": 2.72,
|
2455 |
+
"learning_rate": 3.305369127516779e-05,
|
2456 |
+
"loss": 0.3119,
|
2457 |
+
"step": 408
|
2458 |
+
},
|
2459 |
+
{
|
2460 |
+
"epoch": 2.73,
|
2461 |
+
"learning_rate": 3.301174496644295e-05,
|
2462 |
+
"loss": 0.3318,
|
2463 |
+
"step": 409
|
2464 |
+
},
|
2465 |
+
{
|
2466 |
+
"epoch": 2.74,
|
2467 |
+
"learning_rate": 3.296979865771812e-05,
|
2468 |
+
"loss": 0.355,
|
2469 |
+
"step": 410
|
2470 |
+
},
|
2471 |
+
{
|
2472 |
+
"epoch": 2.74,
|
2473 |
+
"learning_rate": 3.292785234899329e-05,
|
2474 |
+
"loss": 0.2798,
|
2475 |
+
"step": 411
|
2476 |
+
},
|
2477 |
+
{
|
2478 |
+
"epoch": 2.75,
|
2479 |
+
"learning_rate": 3.288590604026846e-05,
|
2480 |
+
"loss": 0.3053,
|
2481 |
+
"step": 412
|
2482 |
+
},
|
2483 |
+
{
|
2484 |
+
"epoch": 2.76,
|
2485 |
+
"learning_rate": 3.284395973154363e-05,
|
2486 |
+
"loss": 0.3159,
|
2487 |
+
"step": 413
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 2.76,
|
2491 |
+
"learning_rate": 3.2802013422818794e-05,
|
2492 |
+
"loss": 0.2852,
|
2493 |
+
"step": 414
|
2494 |
+
},
|
2495 |
+
{
|
2496 |
+
"epoch": 2.77,
|
2497 |
+
"learning_rate": 3.2760067114093964e-05,
|
2498 |
+
"loss": 0.2801,
|
2499 |
+
"step": 415
|
2500 |
+
},
|
2501 |
+
{
|
2502 |
+
"epoch": 2.78,
|
2503 |
+
"learning_rate": 3.271812080536913e-05,
|
2504 |
+
"loss": 0.2946,
|
2505 |
+
"step": 416
|
2506 |
+
},
|
2507 |
+
{
|
2508 |
+
"epoch": 2.78,
|
2509 |
+
"learning_rate": 3.26761744966443e-05,
|
2510 |
+
"loss": 0.2972,
|
2511 |
+
"step": 417
|
2512 |
+
},
|
2513 |
+
{
|
2514 |
+
"epoch": 2.79,
|
2515 |
+
"learning_rate": 3.263422818791946e-05,
|
2516 |
+
"loss": 0.3313,
|
2517 |
+
"step": 418
|
2518 |
+
},
|
2519 |
+
{
|
2520 |
+
"epoch": 2.8,
|
2521 |
+
"learning_rate": 3.259228187919463e-05,
|
2522 |
+
"loss": 0.3031,
|
2523 |
+
"step": 419
|
2524 |
+
},
|
2525 |
+
{
|
2526 |
+
"epoch": 2.8,
|
2527 |
+
"learning_rate": 3.25503355704698e-05,
|
2528 |
+
"loss": 0.2732,
|
2529 |
+
"step": 420
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 2.81,
|
2533 |
+
"learning_rate": 3.250838926174497e-05,
|
2534 |
+
"loss": 0.2799,
|
2535 |
+
"step": 421
|
2536 |
+
},
|
2537 |
+
{
|
2538 |
+
"epoch": 2.82,
|
2539 |
+
"learning_rate": 3.246644295302014e-05,
|
2540 |
+
"loss": 0.3164,
|
2541 |
+
"step": 422
|
2542 |
+
},
|
2543 |
+
{
|
2544 |
+
"epoch": 2.82,
|
2545 |
+
"learning_rate": 3.24244966442953e-05,
|
2546 |
+
"loss": 0.3081,
|
2547 |
+
"step": 423
|
2548 |
+
},
|
2549 |
+
{
|
2550 |
+
"epoch": 2.83,
|
2551 |
+
"learning_rate": 3.238255033557047e-05,
|
2552 |
+
"loss": 0.311,
|
2553 |
+
"step": 424
|
2554 |
+
},
|
2555 |
+
{
|
2556 |
+
"epoch": 2.84,
|
2557 |
+
"learning_rate": 3.2340604026845636e-05,
|
2558 |
+
"loss": 0.2908,
|
2559 |
+
"step": 425
|
2560 |
+
},
|
2561 |
+
{
|
2562 |
+
"epoch": 2.84,
|
2563 |
+
"learning_rate": 3.2298657718120806e-05,
|
2564 |
+
"loss": 0.3139,
|
2565 |
+
"step": 426
|
2566 |
+
},
|
2567 |
+
{
|
2568 |
+
"epoch": 2.85,
|
2569 |
+
"learning_rate": 3.2256711409395976e-05,
|
2570 |
+
"loss": 0.3179,
|
2571 |
+
"step": 427
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 2.86,
|
2575 |
+
"learning_rate": 3.221476510067114e-05,
|
2576 |
+
"loss": 0.2754,
|
2577 |
+
"step": 428
|
2578 |
+
},
|
2579 |
+
{
|
2580 |
+
"epoch": 2.86,
|
2581 |
+
"learning_rate": 3.217281879194631e-05,
|
2582 |
+
"loss": 0.2746,
|
2583 |
+
"step": 429
|
2584 |
+
},
|
2585 |
+
{
|
2586 |
+
"epoch": 2.87,
|
2587 |
+
"learning_rate": 3.213087248322148e-05,
|
2588 |
+
"loss": 0.3103,
|
2589 |
+
"step": 430
|
2590 |
+
},
|
2591 |
+
{
|
2592 |
+
"epoch": 2.88,
|
2593 |
+
"learning_rate": 3.208892617449665e-05,
|
2594 |
+
"loss": 0.2891,
|
2595 |
+
"step": 431
|
2596 |
+
},
|
2597 |
+
{
|
2598 |
+
"epoch": 2.88,
|
2599 |
+
"learning_rate": 3.204697986577181e-05,
|
2600 |
+
"loss": 0.3248,
|
2601 |
+
"step": 432
|
2602 |
+
},
|
2603 |
+
{
|
2604 |
+
"epoch": 2.89,
|
2605 |
+
"learning_rate": 3.200503355704698e-05,
|
2606 |
+
"loss": 0.3306,
|
2607 |
+
"step": 433
|
2608 |
+
},
|
2609 |
+
{
|
2610 |
+
"epoch": 2.9,
|
2611 |
+
"learning_rate": 3.196308724832215e-05,
|
2612 |
+
"loss": 0.3585,
|
2613 |
+
"step": 434
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 2.9,
|
2617 |
+
"learning_rate": 3.1921140939597315e-05,
|
2618 |
+
"loss": 0.3127,
|
2619 |
+
"step": 435
|
2620 |
+
},
|
2621 |
+
{
|
2622 |
+
"epoch": 2.91,
|
2623 |
+
"learning_rate": 3.1879194630872485e-05,
|
2624 |
+
"loss": 0.2553,
|
2625 |
+
"step": 436
|
2626 |
+
},
|
2627 |
+
{
|
2628 |
+
"epoch": 2.92,
|
2629 |
+
"learning_rate": 3.183724832214765e-05,
|
2630 |
+
"loss": 0.3163,
|
2631 |
+
"step": 437
|
2632 |
+
},
|
2633 |
+
{
|
2634 |
+
"epoch": 2.92,
|
2635 |
+
"learning_rate": 3.1795302013422825e-05,
|
2636 |
+
"loss": 0.2985,
|
2637 |
+
"step": 438
|
2638 |
+
},
|
2639 |
+
{
|
2640 |
+
"epoch": 2.93,
|
2641 |
+
"learning_rate": 3.175335570469799e-05,
|
2642 |
+
"loss": 0.2864,
|
2643 |
+
"step": 439
|
2644 |
+
},
|
2645 |
+
{
|
2646 |
+
"epoch": 2.94,
|
2647 |
+
"learning_rate": 3.171140939597316e-05,
|
2648 |
+
"loss": 0.2892,
|
2649 |
+
"step": 440
|
2650 |
+
},
|
2651 |
+
{
|
2652 |
+
"epoch": 2.94,
|
2653 |
+
"learning_rate": 3.166946308724832e-05,
|
2654 |
+
"loss": 0.2679,
|
2655 |
+
"step": 441
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 2.95,
|
2659 |
+
"learning_rate": 3.162751677852349e-05,
|
2660 |
+
"loss": 0.2818,
|
2661 |
+
"step": 442
|
2662 |
+
},
|
2663 |
+
{
|
2664 |
+
"epoch": 2.96,
|
2665 |
+
"learning_rate": 3.158557046979866e-05,
|
2666 |
+
"loss": 0.3748,
|
2667 |
+
"step": 443
|
2668 |
+
},
|
2669 |
+
{
|
2670 |
+
"epoch": 2.96,
|
2671 |
+
"learning_rate": 3.1543624161073825e-05,
|
2672 |
+
"loss": 0.3409,
|
2673 |
+
"step": 444
|
2674 |
+
},
|
2675 |
+
{
|
2676 |
+
"epoch": 2.97,
|
2677 |
+
"learning_rate": 3.1501677852348995e-05,
|
2678 |
+
"loss": 0.2921,
|
2679 |
+
"step": 445
|
2680 |
+
},
|
2681 |
+
{
|
2682 |
+
"epoch": 2.98,
|
2683 |
+
"learning_rate": 3.145973154362416e-05,
|
2684 |
+
"loss": 0.3034,
|
2685 |
+
"step": 446
|
2686 |
+
},
|
2687 |
+
{
|
2688 |
+
"epoch": 2.98,
|
2689 |
+
"learning_rate": 3.1417785234899334e-05,
|
2690 |
+
"loss": 0.3328,
|
2691 |
+
"step": 447
|
2692 |
+
},
|
2693 |
+
{
|
2694 |
+
"epoch": 2.99,
|
2695 |
+
"learning_rate": 3.13758389261745e-05,
|
2696 |
+
"loss": 0.3351,
|
2697 |
+
"step": 448
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 3.0,
|
2701 |
+
"learning_rate": 3.133389261744967e-05,
|
2702 |
+
"loss": 0.3032,
|
2703 |
+
"step": 449
|
2704 |
+
}
|
2705 |
+
],
|
2706 |
+
"logging_steps": 1,
|
2707 |
+
"max_steps": 1192,
|
2708 |
+
"num_train_epochs": 8,
|
2709 |
+
"save_steps": 32,
|
2710 |
+
"total_flos": 1.1252392353438106e+18,
|
2711 |
+
"trial_name": null,
|
2712 |
+
"trial_params": null
|
2713 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e958a56f84f43fcb3a0dd6ceff97b22bbd87dcdac1c403dc3affa48704646e3e
|
3 |
+
size 4091
|