File size: 1,618 Bytes
52a8064 edaaa86 52a8064 edaaa86 52a8064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
license: mit
tags:
- generated_from_trainer
datasets:
- funsd-layoutlmv3
model-index:
- name: lilt-en-funsd-org
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lilt-en-funsd-org
This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8428
- Answer: {'precision': 0.047225501770956316, 'recall': 0.09791921664626684, 'f1': 0.06371963361210674, 'number': 817}
- Header: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}
- Question: {'precision': 0.08554412560909583, 'recall': 0.2934076137418756, 'f1': 0.13246698805281912, 'number': 1077}
- Overall Precision: 0.0730
- Overall Recall: 0.1967
- Overall F1: 0.1065
- Overall Accuracy: 0.2652
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
|