ppo-LunarLander-v2 / config.json
tirik00's picture
initial commit
c69780a
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8cf7144a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8cf7144af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8cf7144b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8cf7144c10>", "_build": "<function ActorCriticPolicy._build at 0x7f8cf7144ca0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8cf7144d30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8cf7144dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8cf7144e50>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8cf7144ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8cf7144f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8cf7145000>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8cf7145090>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8cf72dfb80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1704749421445840458, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAP+aL4hpWw/1r1SPmYww77m7oy+vpe2PgAAAAAAAAAAGjVNPTENuj+wlAQ/I1rVPbFDiTpGRCE+AAAAAAAAAABNxzg9dBWJvI5jmrw7TA09Hf1OPRs4K7gAAIA/AACAP60ZVr7jboE/liC0PcIIzb6F+6W+sFSXPgAAAAAAAAAAzajqPIW8u7tFYIe7xPiNPNXxBr1SzHA9AACAPwAAgD8AbT89KRQnuraEIrd3dSyxrVSFu7POPjYAAIA/AACAP82AZzxvc7I/Ams1PwBZxb6GC2q8/jj4vQAAAAAAAAAAZiBwPdIfwrt4Iwi8/eKoPKIWFL3azI09AACAPwAAgD8NBIU9Ad+cPv2bab6pA5i+VbwNvWASx70AAAAAAAAAAM1fP71sQJa7y5KVuu7zwzwfafE8J9GkvQAAgD8AAIA/zSnCvYZ6+T6MocI9tdKovrWpL712nu89AAAAAAAAAAAAgig8z31hvE92Fz1pWwA8xqB6vTUDzT0AAIA/AACAP81Y3T1ibog/3q21PpmlN7+MN1Q+++naPQAAAAAAAAAAYPY6vofaSD+bbt89VMjXvvKFhL4Vmqo+AAAAAAAAAAAz3/e7XEFNPlov+zxRS6G+21oqPfO4mb0AAAAAAAAAANpuzL3h0JK6LxOFO567dTbOabc6yEGaugAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAGzrqt5liMAWyUS+2MAXSUR0Cg+fHoouwpdX2UKGgGR0Bx7Jh7VrhzaAdL2mgIR0Cg+h/oicG1dX2UKGgGR0BuKC6g/TsqaAdL72gIR0Cg+iNr9EThdX2UKGgGR0BQq7BbfP5YaAdLqmgIR0Cg+wgsbvPUdX2UKGgGR0BxDQPiDM/yaAdL7mgIR0Cg+xhAOavzdX2UKGgGR0BxKmf9P1tgaAdL/GgIR0Cg+yTF+/g0dX2UKGgGR8BOfCXQdCE6aAdLhWgIR0Cg+0yP2f03dX2UKGgGR0Bwdd3HJcPfaAdL+WgIR0Cg+2tj9XLedX2UKGgGR0Bz/4AGSpzcaAdLz2gIR0Cg+/35eqrBdX2UKGgGR0BxE8JHAh0RaAdL2mgIR0Cg/L+WOZLJdX2UKGgGR0ByevvYvnKXaAdL7GgIR0Cg/NNsvZh8dX2UKGgGR0BSvTCk43m3aAdL1WgIR0Cg/ShS9/SZdX2UKGgGR0BxfGcnVoYfaAdL2GgIR0Cg/TTsIE8rdX2UKGgGR0BwMHhQ3xWlaAdL42gIR0Cg/ZgG0NSZdX2UKGgGR0ByWH+kxh2GaAdL6GgIR0Cg/alAE+xGdX2UKGgGR0Bx7u8xsVL0aAdNHwFoCEdAoP4QPbwjMXV9lChoBkdAcp3JSzgMt2gHS9RoCEdAoP5WRA8jiXV9lChoBkdAcqBZl4C6pmgHS9ZoCEdAoP6txffGdnV9lChoBkdAcQvSsr/bTWgHS9BoCEdAoP63Y6GQCHV9lChoBkdAc0Jal1r6+GgHS+1oCEdAoP7dpdrwfHV9lChoBkdAcWToRIz3y2gHTQABaAhHQKD/HAkcCHR1fZQoaAZHQGStQ176YVtoB03oA2gIR0Cg/1f8l5WzdX2UKGgGR0By41DRc/t6aAdL6mgIR0Cg/7D5j6N3dX2UKGgGR0Bl7ptFa0QcaAdN6ANoCEdAoQAu+TNdJXV9lChoBkdAcK9hhH9WIWgHS/FoCEdAoQB5nUUfxXV9lChoBkdAbfic6vJRwmgHS9doCEdAoQB4YekpJHV9lChoBkdAcnTegctGu2gHS9loCEdAoQCL7sOXmnV9lChoBkdAcEUi5uqFRGgHS/toCEdAoQCwwEhaDHV9lChoBkdAcxnUKzAvc2gHS9BoCEdAoQDOCXhOxnV9lChoBkdAcy6Ippeu3mgHS+BoCEdAoQDw99tuUHV9lChoBkdAbbSeOGTLXGgHS9hoCEdAoQFloL5RCXV9lChoBkdAcPTDCP6sQ2gHS+9oCEdAoQF4WxhUi3V9lChoBkdAcgaTZxrBTGgHS75oCEdAoQGqgTRIBnV9lChoBkdAceWzz3AVPGgHS/ZoCEdAoQpq2tuDSXV9lChoBkdAce+zVc2R72gHTQIBaAhHQKEKj00WM0h1fZQoaAZHQHHNQK4QSSNoB0v2aAhHQKELPV3ljmV1fZQoaAZHQHET7Ou7pV1oB00YAWgIR0ChC0fdRBNVdX2UKGgGR0ByImEmICU5aAdL8GgIR0ChC5hJZntfdX2UKGgGR0A3sN6PbO/taAdLsWgIR0ChC6+E7GNrdX2UKGgGR0Bwg1jhDPWyaAdL82gIR0ChDEgxJul5dX2UKGgGR0BytiwOe8PGaAdL4mgIR0ChDFNOM2m6dX2UKGgGR0BwiSGlANXpaAdL9WgIR0ChDMaDPGADdX2UKGgGR0Bwc3Ms6JZXaAdL72gIR0ChDQPRJEpidX2UKGgGR0Bx4uDM/yG0aAdNHAFoCEdAoQ1ksSTQmnV9lChoBkdAc6jGWD6Fd2gHS9VoCEdAoQ10D0UXYXV9lChoBkdAc/KD9Oymh2gHS9BoCEdAoQ14ouwos3V9lChoBkdAcZn66asp5WgHS/5oCEdAoQ2B62OQyXV9lChoBkdAcszM36yjYmgHS9FoCEdAoQ28hmoR7XV9lChoBkdAchtsrd30PGgHS99oCEdAoQ6BPZZjhHV9lChoBkdAceWzvZyuIWgHS8xoCEdAoQ72+Cbtq3V9lChoBkdAcXPzqrzXjGgHS/poCEdAoQ8zAtWdVnV9lChoBkdAcBsZElVtGmgHS8toCEdAoQ9HvttygnV9lChoBkdAcOLtm+TNdWgHS+RoCEdAoQ9jBl+VknV9lChoBkdAcZ6iSJTESGgHS75oCEdAoQ+92C/XXnV9lChoBkdAcxOT8HfMwGgHS+doCEdAoQ/dXeWOZXV9lChoBkdAciiaYNRWLmgHS+JoCEdAoRBcBOpKjHV9lChoBkdAcJHhPj4pMGgHS9NoCEdAoRC0idJ8OXV9lChoBkdAbyot4A0bcWgHS+JoCEdAoRC7fYSQHXV9lChoBkdAZevk8Rtgr2gHTegDaAhHQKEQwq0dBB11fZQoaAZHQHGUgIyCWeJoB0vTaAhHQKERNTw2ETR1fZQoaAZHQHLuhKHwgDBoB0vlaAhHQKERN4dp7C11fZQoaAZHQHJGpqVQhwFoB0vkaAhHQKERPGLk0aZ1fZQoaAZHQG8JVTR6WxBoB0vnaAhHQKERPE1l5GB1fZQoaAZHQFANQEZBLPFoB0uPaAhHQKESEK9f1Hx1fZQoaAZHQHGCcR6F/QVoB0viaAhHQKESUWi1y/91fZQoaAZHQHK2aZx7zCloB0vfaAhHQKESVltj0+V1fZQoaAZHQHKbDua4MF5oB0vzaAhHQKESYeyRjjJ1fZQoaAZHQHLxOy/sVtZoB0vfaAhHQKESZ7yhBZ91fZQoaAZHQHEs/kq+ajNoB00XAWgIR0ChEoVKXfIkdX2UKGgGR0BxDSFyq+8HaAdL3mgIR0ChErXirDIjdX2UKGgGR0BwikIjW07baAdL7WgIR0ChEtAYpDu0dX2UKGgGR0Bt+b0OEug6aAdL42gIR0ChE2lC9h7WdX2UKGgGR0BzU2x4Y77saAdLzGgIR0ChE6wXZXdTdX2UKGgGR0Bz8H+0gKWtaAdL/mgIR0ChE8yP2f03dX2UKGgGR0ByklLSNOuaaAdL2WgIR0ChE9eQMhHLdX2UKGgGR0ByQXaQFLWaaAdL3GgIR0ChE90ALiMpdX2UKGgGR0Bxj0ukDZDiaAdL32gIR0ChE+O76Hj7dX2UKGgGR0BwoIS8J2MbaAdLwmgIR0ChFMc4gieNdX2UKGgGR0ByZFeSjgyeaAdLyGgIR0ChFMp6yB07dX2UKGgGR0ByrBMIu5BkaAdL1GgIR0ChFPeOGTLXdX2UKGgGR0Bv9rRWtEG8aAdL6WgIR0ChFPp84PwvdX2UKGgGR0ByZKpEQXhwaAdL2WgIR0ChFRzltCRfdX2UKGgGR0ByI/rPdEb6aAdL1mgIR0ChFTD2JzkqdX2UKGgGR0Byna21D0DmaAdNfgFoCEdAoRVcabWmQHV9lChoBkdAb91H8TBZZGgHS/BoCEdAoRXPFLnLaHV9lChoBkdAcXuPQfIS12gHTQsBaAhHQKEWGBMBZIR1fZQoaAZHQHJauUMXrMVoB0vlaAhHQKEWV4yGi6B1fZQoaAZHQHK6E2P1ct5oB0vOaAhHQKEWiTKT0QN1fZQoaAZHQHAKPi5uqFRoB0vfaAhHQKEWq0zj3mF1fZQoaAZHQHMGKhpQDV9oB0vfaAhHQKEWte1KGtZ1fZQoaAZHQHNEvNu+AVhoB0vtaAhHQKEWud7v5QB1fZQoaAZHQGzUbvG6wt9oB0vwaAhHQKEW65NGmUJ1fZQoaAZHQHHPAwj+rENoB0vMaAhHQKEXYvW6K+B1fZQoaAZHQHGNAJXyRSxoB0veaAhHQKEXntCzC1t1fZQoaAZHQHHoLCiyprFoB0vhaAhHQKEX9yNn5BV1fZQoaAZHQHG71ruYx+NoB0vcaAhHQKEX/PgvUSZ1fZQoaAZHQHEJtfsu3+doB0vvaAhHQKEYAxA0Kqp1fZQoaAZHQHF80y1uzhRoB0v8aAhHQKEYmT6BRQ91fZQoaAZHQG9g+VC5VfhoB0vqaAhHQKEY14rSVnp1fZQoaAZHQHI3B+vyLAJoB000AWgIR0ChGO5c1O0tdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}