timm
/

Image Classification
timm
PyTorch
Safetensors
Transformers
rwightman HF staff commited on
Commit
1bea4ce
·
1 Parent(s): 5e14fc2
Files changed (4) hide show
  1. README.md +153 -0
  2. config.json +41 -0
  3. model.safetensors +3 -0
  4. pytorch_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - image-classification
4
+ - timm
5
+ library_tag: timm
6
+ license: apache-2.0
7
+ datasets:
8
+ - imagenet-1k
9
+ - imagenet-12k
10
+ ---
11
+ # Model card for rexnetr_200.sw_in12k_ft_in1k
12
+
13
+ A ReXNet-R image classification model. The R variant of the architecture is `timm` specific and rounds channels (modulus 8 or 16) to prevent performance issues w/ NVIDIA Tensor Cores. Pretrained on ImageNet-12k and fine-tuned on ImageNet-1k by Ross Wightman in `timm`.
14
+
15
+
16
+ ## Model Details
17
+ - **Model Type:** Image classification / feature backbone
18
+ - **Model Stats:**
19
+ - Params (M): 16.5
20
+ - GMACs: 1.6
21
+ - Activations (M): 15.1
22
+ - Image size: train = 224 x 224, test = 288 x 288
23
+ - **Papers:**
24
+ - Rethinking Channel Dimensions for Efficient Model Design: https://arxiv.org/abs/2007.00992
25
+ - **Original:** https://github.com/huggingface/pytorch-image-models
26
+ - **Dataset:** ImageNet-1k
27
+ - **Pretrain Dataset:** ImageNet-12k
28
+
29
+ ## Model Usage
30
+ ### Image Classification
31
+ ```python
32
+ from urllib.request import urlopen
33
+ from PIL import Image
34
+ import timm
35
+
36
+ img = Image.open(urlopen(
37
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
38
+ ))
39
+
40
+ model = timm.create_model('rexnetr_200.sw_in12k_ft_in1k', pretrained=True)
41
+ model = model.eval()
42
+
43
+ # get model specific transforms (normalization, resize)
44
+ data_config = timm.data.resolve_model_data_config(model)
45
+ transforms = timm.data.create_transform(**data_config, is_training=False)
46
+
47
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
48
+
49
+ top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
50
+ ```
51
+
52
+ ### Feature Map Extraction
53
+ ```python
54
+ from urllib.request import urlopen
55
+ from PIL import Image
56
+ import timm
57
+
58
+ img = Image.open(urlopen(
59
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
60
+ ))
61
+
62
+ model = timm.create_model(
63
+ 'rexnetr_200.sw_in12k_ft_in1k',
64
+ pretrained=True,
65
+ features_only=True,
66
+ )
67
+ model = model.eval()
68
+
69
+ # get model specific transforms (normalization, resize)
70
+ data_config = timm.data.resolve_model_data_config(model)
71
+ transforms = timm.data.create_transform(**data_config, is_training=False)
72
+
73
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
74
+
75
+ for o in output:
76
+ # print shape of each feature map in output
77
+ # e.g.:
78
+ # torch.Size([1, 32, 112, 112])
79
+ # torch.Size([1, 80, 56, 56])
80
+ # torch.Size([1, 120, 28, 28])
81
+ # torch.Size([1, 256, 14, 14])
82
+ # torch.Size([1, 368, 7, 7])
83
+
84
+ print(o.shape)
85
+ ```
86
+
87
+ ### Image Embeddings
88
+ ```python
89
+ from urllib.request import urlopen
90
+ from PIL import Image
91
+ import timm
92
+
93
+ img = Image.open(urlopen(
94
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
95
+ ))
96
+
97
+ model = timm.create_model(
98
+ 'rexnetr_200.sw_in12k_ft_in1k',
99
+ pretrained=True,
100
+ num_classes=0, # remove classifier nn.Linear
101
+ )
102
+ model = model.eval()
103
+
104
+ # get model specific transforms (normalization, resize)
105
+ data_config = timm.data.resolve_model_data_config(model)
106
+ transforms = timm.data.create_transform(**data_config, is_training=False)
107
+
108
+ output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
109
+
110
+ # or equivalently (without needing to set num_classes=0)
111
+
112
+ output = model.forward_features(transforms(img).unsqueeze(0))
113
+ # output is unpooled, a (1, 2560, 7, 7) shaped tensor
114
+
115
+ output = model.forward_head(output, pre_logits=True)
116
+ # output is a (1, num_features) shaped tensor
117
+ ```
118
+
119
+ ## Model Comparison
120
+ Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results)."
121
+
122
+ |model |top1 |top5 |param_count|img_size|crop_pct|
123
+ |-------------------------|------|------|-----------|--------|--------|
124
+ |rexnetr_300.sw_in12k_ft_in1k|84.53 |97.252|34.81 |288 |1.0 |
125
+ |rexnetr_200.sw_in12k_ft_in1k|83.164|96.648|16.52 |288 |1.0 |
126
+ |rexnet_300.nav_in1k |82.772|96.232|34.71 |224 |0.875 |
127
+ |rexnet_200.nav_in1k |81.652|95.668|16.37 |224 |0.875 |
128
+ |rexnet_150.nav_in1k |80.308|95.174|9.73 |224 |0.875 |
129
+ |rexnet_130.nav_in1k |79.478|94.68 |7.56 |224 |0.875 |
130
+ |rexnet_100.nav_in1k |77.832|93.886|4.8 |224 |0.875 |
131
+
132
+ ## Citation
133
+ ```bibtex
134
+ @misc{han2021rethinking,
135
+ title={Rethinking Channel Dimensions for Efficient Model Design},
136
+ author={Dongyoon Han and Sangdoo Yun and Byeongho Heo and YoungJoon Yoo},
137
+ year={2021},
138
+ eprint={2007.00992},
139
+ archivePrefix={arXiv},
140
+ primaryClass={cs.CV}
141
+ }
142
+ ```
143
+ ```bibtex
144
+ @misc{rw2019timm,
145
+ author = {Ross Wightman},
146
+ title = {PyTorch Image Models},
147
+ year = {2019},
148
+ publisher = {GitHub},
149
+ journal = {GitHub repository},
150
+ doi = {10.5281/zenodo.4414861},
151
+ howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
152
+ }
153
+ ```
config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architecture": "rexnetr_200",
3
+ "num_classes": 1000,
4
+ "num_features": 2560,
5
+ "pretrained_cfg": {
6
+ "tag": "sw_in12k_ft_in1k",
7
+ "custom_load": false,
8
+ "input_size": [
9
+ 3,
10
+ 224,
11
+ 224
12
+ ],
13
+ "test_input_size": [
14
+ 3,
15
+ 288,
16
+ 288
17
+ ],
18
+ "fixed_input_size": false,
19
+ "interpolation": "bicubic",
20
+ "crop_pct": 1.0,
21
+ "crop_mode": "center",
22
+ "mean": [
23
+ 0.485,
24
+ 0.456,
25
+ 0.406
26
+ ],
27
+ "std": [
28
+ 0.229,
29
+ 0.224,
30
+ 0.225
31
+ ],
32
+ "num_classes": 1000,
33
+ "pool_size": [
34
+ 7,
35
+ 7
36
+ ],
37
+ "first_conv": "stem.conv",
38
+ "classifier": "head.fc",
39
+ "license": "apache-2.0"
40
+ }
41
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d92c098c499b8482bc824bec5c4c79acb47d82c54aa48285e5b3c39118f3e8fc
3
+ size 66463248
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71c5a18d39c0bbeeca2c4e7777a83b9e6fa43ee7d966599b81930322c706d694
3
+ size 66564353