Add model
Browse files- README.md +162 -0
- config.json +41 -0
- model.safetensors +3 -0
- pytorch_model.bin +3 -0
README.md
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- image-classification
|
4 |
+
- timm
|
5 |
+
library_name: timm
|
6 |
+
license: apache-2.0
|
7 |
+
datasets:
|
8 |
+
- imagenet-1k
|
9 |
+
---
|
10 |
+
# Model card for mambaout_base_short_rw.sw_e500_in1k
|
11 |
+
|
12 |
+
A MambaOut image classification model with `timm` specific architecture customizations. Trained on ImageNet-1k by Ross Wightman using Swin / ConvNeXt based recipe.
|
13 |
+
|
14 |
+
|
15 |
+
## Model Details
|
16 |
+
- **Model Type:** Image classification / feature backbone
|
17 |
+
- **Model Stats:**
|
18 |
+
- Params (M): 88.8
|
19 |
+
- GMACs: 16.3
|
20 |
+
- Activations (M): 38.1
|
21 |
+
- Image size: train = 224 x 224, test = 288 x 288
|
22 |
+
- **Dataset:** ImageNet-1k
|
23 |
+
- **Papers:**
|
24 |
+
- PyTorch Image Models: https://github.com/huggingface/pytorch-image-models
|
25 |
+
- MambaOut: Do We Really Need Mamba for Vision?: https://arxiv.org/abs/2405.07992
|
26 |
+
- **Original:** https://github.com/yuweihao/MambaOut
|
27 |
+
|
28 |
+
## Model Usage
|
29 |
+
### Image Classification
|
30 |
+
```python
|
31 |
+
from urllib.request import urlopen
|
32 |
+
from PIL import Image
|
33 |
+
import timm
|
34 |
+
|
35 |
+
img = Image.open(urlopen(
|
36 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
37 |
+
))
|
38 |
+
|
39 |
+
model = timm.create_model('mambaout_base_short_rw.sw_e500_in1k', pretrained=True)
|
40 |
+
model = model.eval()
|
41 |
+
|
42 |
+
# get model specific transforms (normalization, resize)
|
43 |
+
data_config = timm.data.resolve_model_data_config(model)
|
44 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
45 |
+
|
46 |
+
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
|
47 |
+
|
48 |
+
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
|
49 |
+
```
|
50 |
+
|
51 |
+
### Feature Map Extraction
|
52 |
+
```python
|
53 |
+
from urllib.request import urlopen
|
54 |
+
from PIL import Image
|
55 |
+
import timm
|
56 |
+
|
57 |
+
img = Image.open(urlopen(
|
58 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
59 |
+
))
|
60 |
+
|
61 |
+
model = timm.create_model(
|
62 |
+
'mambaout_base_short_rw.sw_e500_in1k',
|
63 |
+
pretrained=True,
|
64 |
+
features_only=True,
|
65 |
+
)
|
66 |
+
model = model.eval()
|
67 |
+
|
68 |
+
# get model specific transforms (normalization, resize)
|
69 |
+
data_config = timm.data.resolve_model_data_config(model)
|
70 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
71 |
+
|
72 |
+
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
|
73 |
+
|
74 |
+
for o in output:
|
75 |
+
# print shape of each feature map in output
|
76 |
+
# e.g.:
|
77 |
+
# torch.Size([1, 56, 56, 128])
|
78 |
+
# torch.Size([1, 28, 28, 256])
|
79 |
+
# torch.Size([1, 14, 14, 512])
|
80 |
+
# torch.Size([1, 7, 7, 768])
|
81 |
+
|
82 |
+
print(o.shape)
|
83 |
+
```
|
84 |
+
|
85 |
+
### Image Embeddings
|
86 |
+
```python
|
87 |
+
from urllib.request import urlopen
|
88 |
+
from PIL import Image
|
89 |
+
import timm
|
90 |
+
|
91 |
+
img = Image.open(urlopen(
|
92 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
93 |
+
))
|
94 |
+
|
95 |
+
model = timm.create_model(
|
96 |
+
'mambaout_base_short_rw.sw_e500_in1k',
|
97 |
+
pretrained=True,
|
98 |
+
num_classes=0, # remove classifier nn.Linear
|
99 |
+
)
|
100 |
+
model = model.eval()
|
101 |
+
|
102 |
+
# get model specific transforms (normalization, resize)
|
103 |
+
data_config = timm.data.resolve_model_data_config(model)
|
104 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
105 |
+
|
106 |
+
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
|
107 |
+
|
108 |
+
# or equivalently (without needing to set num_classes=0)
|
109 |
+
|
110 |
+
output = model.forward_features(transforms(img).unsqueeze(0))
|
111 |
+
# output is unpooled, a (1, 7, 7, 768) shaped tensor
|
112 |
+
|
113 |
+
output = model.forward_head(output, pre_logits=True)
|
114 |
+
# output is a (1, num_features) shaped tensor
|
115 |
+
```
|
116 |
+
|
117 |
+
## Model Comparison
|
118 |
+
### By Top-1
|
119 |
+
|
120 |
+
|model |img_size|top1 |top5 |param_count|
|
121 |
+
|---------------------------------------------------------------------------------------------------------------------|--------|------|------|-----------|
|
122 |
+
|[mambaout_base_plus_rw.sw_e150_in12k_ft_in1k](http://huggingface.co/timm/mambaout_base_plus_rw.sw_e150_in12k_ft_in1k)|288 |86.912|98.236|101.66 |
|
123 |
+
|[mambaout_base_plus_rw.sw_e150_in12k_ft_in1k](http://huggingface.co/timm/mambaout_base_plus_rw.sw_e150_in12k_ft_in1k)|224 |86.632|98.156|101.66 |
|
124 |
+
|[mambaout_base_tall_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_tall_rw.sw_e500_in1k) |288 |84.974|97.332|86.48 |
|
125 |
+
|[mambaout_base_wide_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_wide_rw.sw_e500_in1k) |288 |84.962|97.208|94.45 |
|
126 |
+
|[mambaout_base_short_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_short_rw.sw_e500_in1k) |288 |84.832|97.27 |88.83 |
|
127 |
+
|[mambaout_base.in1k](http://huggingface.co/timm/mambaout_base.in1k) |288 |84.72 |96.93 |84.81 |
|
128 |
+
|[mambaout_small_rw.sw_e450_in1k](http://huggingface.co/timm/mambaout_small_rw.sw_e450_in1k) |288 |84.598|97.098|48.5 |
|
129 |
+
|[mambaout_small.in1k](http://huggingface.co/timm/mambaout_small.in1k) |288 |84.5 |96.974|48.49 |
|
130 |
+
|[mambaout_base_wide_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_wide_rw.sw_e500_in1k) |224 |84.454|96.864|94.45 |
|
131 |
+
|[mambaout_base_tall_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_tall_rw.sw_e500_in1k) |224 |84.434|96.958|86.48 |
|
132 |
+
|[mambaout_base_short_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_short_rw.sw_e500_in1k) |224 |84.362|96.952|88.83 |
|
133 |
+
|[mambaout_base.in1k](http://huggingface.co/timm/mambaout_base.in1k) |224 |84.168|96.68 |84.81 |
|
134 |
+
|[mambaout_small.in1k](http://huggingface.co/timm/mambaout_small.in1k) |224 |84.086|96.63 |48.49 |
|
135 |
+
|[mambaout_small_rw.sw_e450_in1k](http://huggingface.co/timm/mambaout_small_rw.sw_e450_in1k) |224 |84.024|96.752|48.5 |
|
136 |
+
|[mambaout_tiny.in1k](http://huggingface.co/timm/mambaout_tiny.in1k) |288 |83.448|96.538|26.55 |
|
137 |
+
|[mambaout_tiny.in1k](http://huggingface.co/timm/mambaout_tiny.in1k) |224 |82.736|96.1 |26.55 |
|
138 |
+
|[mambaout_kobe.in1k](http://huggingface.co/timm/mambaout_kobe.in1k) |288 |81.054|95.718|9.14 |
|
139 |
+
|[mambaout_kobe.in1k](http://huggingface.co/timm/mambaout_kobe.in1k) |224 |79.986|94.986|9.14 |
|
140 |
+
|[mambaout_femto.in1k](http://huggingface.co/timm/mambaout_femto.in1k) |288 |79.848|95.14 |7.3 |
|
141 |
+
|[mambaout_femto.in1k](http://huggingface.co/timm/mambaout_femto.in1k) |224 |78.87 |94.408|7.3 |
|
142 |
+
|
143 |
+
## Citation
|
144 |
+
```bibtex
|
145 |
+
@misc{rw2019timm,
|
146 |
+
author = {Ross Wightman},
|
147 |
+
title = {PyTorch Image Models},
|
148 |
+
year = {2019},
|
149 |
+
publisher = {GitHub},
|
150 |
+
journal = {GitHub repository},
|
151 |
+
doi = {10.5281/zenodo.4414861},
|
152 |
+
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
|
153 |
+
}
|
154 |
+
```
|
155 |
+
```bibtex
|
156 |
+
@article{yu2024mambaout,
|
157 |
+
title={MambaOut: Do We Really Need Mamba for Vision?},
|
158 |
+
author={Yu, Weihao and Wang, Xinchao},
|
159 |
+
journal={arXiv preprint arXiv:2405.07992},
|
160 |
+
year={2024}
|
161 |
+
}
|
162 |
+
```
|
config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architecture": "mambaout_base_short_rw",
|
3 |
+
"num_classes": 1000,
|
4 |
+
"num_features": 768,
|
5 |
+
"pretrained_cfg": {
|
6 |
+
"tag": "sw_e500_in1k",
|
7 |
+
"custom_load": false,
|
8 |
+
"input_size": [
|
9 |
+
3,
|
10 |
+
224,
|
11 |
+
224
|
12 |
+
],
|
13 |
+
"test_input_size": [
|
14 |
+
3,
|
15 |
+
288,
|
16 |
+
288
|
17 |
+
],
|
18 |
+
"fixed_input_size": false,
|
19 |
+
"interpolation": "bicubic",
|
20 |
+
"crop_pct": 0.95,
|
21 |
+
"test_crop_pct": 1.0,
|
22 |
+
"crop_mode": "center",
|
23 |
+
"mean": [
|
24 |
+
0.485,
|
25 |
+
0.456,
|
26 |
+
0.406
|
27 |
+
],
|
28 |
+
"std": [
|
29 |
+
0.229,
|
30 |
+
0.224,
|
31 |
+
0.225
|
32 |
+
],
|
33 |
+
"num_classes": 1000,
|
34 |
+
"pool_size": [
|
35 |
+
7,
|
36 |
+
7
|
37 |
+
],
|
38 |
+
"first_conv": "stem.conv1",
|
39 |
+
"classifier": "head.fc"
|
40 |
+
}
|
41 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:93170a377b319652ce26e83386704adfec09ad048905c3d5959bd870897327d0
|
3 |
+
size 355343264
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d76d8c39680bdda05f5dd2bf4504125b94bcf73f11c7b8f63684a704f3a664ea
|
3 |
+
size 355426930
|