File size: 1,393 Bytes
5c88e6c ba2c8a0 5c88e6c fb134fd cb48e4c fb134fd 5c88e6c fb134fd 446ac2a 5c88e6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
license: other
language:
- en
pipeline_tag: text-generation
datasets:
- LDJnr/Puffin
- pvduy/rm_hh_helpful_only
library_name: peft
widget:
- text: "USER: What's better, farming, or using computers (which suck)\nASSISTANT:"
---
<table>
<tr>
<td style="width: 30%; text-align: left; vertical-align: middle">
# CurtGPT
Using Microsoft's Phi 1.5 model like it was never intended.
</td>
<td style="text-align: center;">
<img src="https://github.com/tim-a-davis/silly_little_language_modeling_thing_at_utd/blob/main/curtgpt%20logo.png?raw=true" width="300" height="auto">
</td>
</tr>
</table>
# Main Procedure
This model is an adapter on [puffin phi v2](https://huggingface.co/teknium/Puffin-Phi-v2) trained using [QLoRA](https://arxiv.org/pdf/2305.14314.pdf) and [DPO](https://arxiv.org/pdf/2305.18290.pdf) on 60,000 samples from the [anthropic helpful only](https://huggingface.co/datasets/pvduy/rm_hh_helpful_only) dataset.
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0 |