Text Generation
Transformers
Safetensors
English
falcon_mamba
Eval Results
Inference Endpoints
ybelkada commited on
Commit
f91f64e
·
verified ·
1 Parent(s): e0f2223

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +141 -3
README.md CHANGED
@@ -1,3 +1,141 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - multilingual
4
+
5
+ license: apache-2.0
6
+ ---
7
+
8
+ # Model Card for FLAN-T5 large
9
+
10
+
11
+
12
+ # Table of Contents
13
+
14
+ 0. [TL;DR](#TL;DR)
15
+ 1. [Model Details](#model-details)
16
+ 2. [Usage](#usage)
17
+ 3. [Training Details](#training-details)
18
+ 4. [Evaluation](#evaluation)
19
+
20
+
21
+ # TL;DR
22
+
23
+ # Model Details
24
+
25
+ ## Model Description
26
+
27
+
28
+ - **Model type:** Language model
29
+ - **Language(s) (NLP):** English
30
+ - **License:** Apache 2.0
31
+
32
+ # Usage
33
+
34
+ Find below some example scripts on how to use the model in `transformers` (Make sure to have the latest transformers, or the one built from source):
35
+
36
+ ## Using the Pytorch model
37
+
38
+ ### Running the model on a CPU
39
+
40
+ <details>
41
+ <summary> Click to expand </summary>
42
+
43
+ ```python
44
+ from transformers import AutoTokenizer, AutoModelForCausalLM
45
+
46
+ tokenizer = AutoTokenizer.from_pretrained("tiiuae/sindibad-7b")
47
+ model = AutoModelForCausalLM.from_pretrained("tiiuae/sindibad-7b")
48
+
49
+ input_text = "Question: How many hours in one day? Answer: "
50
+ input_ids = tokenizer(input_text, return_tensors="pt").input_ids
51
+
52
+ outputs = model.generate(input_ids)
53
+ print(tokenizer.decode(outputs[0]))
54
+ ```
55
+
56
+ </details>
57
+
58
+ ### Running the model on a GPU
59
+
60
+ <details>
61
+ <summary> Click to expand </summary>
62
+
63
+ ```python
64
+ # pip install accelerate
65
+ from transformers import AutoTokenizer, AutoModelForCausalLM
66
+
67
+ tokenizer = AutoTokenizer.from_pretrained("tiiuae/sindibad-7b")
68
+ model = AutoModelForCausalLM.from_pretrained("tiiuae/sindibad-7b", device_map="auto")
69
+
70
+ input_text = "Question: How many hours in one day? Answer: "
71
+ input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
72
+
73
+ outputs = model.generate(input_ids)
74
+ print(tokenizer.decode(outputs[0]))
75
+ ```
76
+
77
+ </details>
78
+
79
+ ### Running the model on a GPU using different precisions
80
+
81
+ #### FP16
82
+
83
+ <details>
84
+ <summary> Click to expand </summary>
85
+
86
+ ```python
87
+ # pip install accelerate
88
+ import torch
89
+ from transformers import AutoTokenizer, AutoModelForCausalLM
90
+
91
+ tokenizer = AutoTokenizer.from_pretrained("tiiuae/sindibad-7b")
92
+ model = AutoModelForCausalLM.from_pretrained("tiiuae/sindibad-7b", device_map="auto", torch_dtype=torch.float16)
93
+
94
+ input_text = "Question: How many hours in one day? Answer: "
95
+ input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
96
+
97
+ outputs = model.generate(input_ids)
98
+ print(tokenizer.decode(outputs[0]))
99
+ ```
100
+
101
+ </details>
102
+
103
+ #### INT8
104
+
105
+ <details>
106
+ <summary> Click to expand </summary>
107
+
108
+ ```python
109
+ # pip install bitsandbytes accelerate
110
+ from transformers import AutoTokenizer, AutoModelForCausalLM
111
+
112
+ tokenizer = AutoTokenizer.from_pretrained("tiiuae/sindibad-7b")
113
+ model = AutoModelForCausalLM.from_pretrained("tiiuae/sindibad-7b", device_map="auto", load_in_8bit=True)
114
+
115
+ input_text = "Question: How many hours in one day? Answer: "
116
+ input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
117
+
118
+ outputs = model.generate(input_ids)
119
+ print(tokenizer.decode(outputs[0]))
120
+ ```
121
+
122
+ </details>
123
+
124
+
125
+ # Training Details
126
+
127
+ ## Training Data
128
+
129
+
130
+
131
+ ## Training Procedure
132
+
133
+
134
+ # Evaluation
135
+
136
+ ## Testing Data, Factors & Metrics
137
+
138
+
139
+ ## Results
140
+
141
+