slimfrikha-tii
commited on
Commit
·
2b69b8f
1
Parent(s):
47bca49
docs(readme.md): init readme
Browse files
README.md
CHANGED
@@ -1,3 +1,305 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- falcon3
|
6 |
+
---
|
7 |
+
|
8 |
+
|
9 |
+
# Table of Contents
|
10 |
+
|
11 |
+
0. [TL;DR](#TL;DR)
|
12 |
+
1. [Model Details](#model-details)
|
13 |
+
2. [Usage](#usage)
|
14 |
+
3. [Training Details](#training-details)
|
15 |
+
4. [Evaluation](#evaluation)
|
16 |
+
|
17 |
+
|
18 |
+
# TL;DR
|
19 |
+
Falcon 3 family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B.
|
20 |
+
|
21 |
+
This repository contains the Falcon3-7B-Instruct, the best Instruct LLM under 8B at the time of release.
|
22 |
+
|
23 |
+
# Model Details
|
24 |
+
|
25 |
+
## Model Description
|
26 |
+
|
27 |
+
- **Developed by:** [https://www.tii.ae](https://www.tii.ae)
|
28 |
+
- **Model type:** Causal decoder-only
|
29 |
+
- **Architecture:** Transformer-base
|
30 |
+
- **Language(s) (NLP):** Mainly English
|
31 |
+
- **License:** TII Falcon-LLM License 2.0
|
32 |
+
|
33 |
+
<br>
|
34 |
+
|
35 |
+
# Usage
|
36 |
+
|
37 |
+
Find below an example on how to use the model in `transformers` (Make sure to have the latest transformers, or the one built from source):
|
38 |
+
|
39 |
+
<details>
|
40 |
+
<summary> Click to expand </summary>
|
41 |
+
|
42 |
+
```python
|
43 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
44 |
+
|
45 |
+
|
46 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
47 |
+
|
48 |
+
model_name = "tiiuae/Falcon3-7B-Instruct"
|
49 |
+
|
50 |
+
model = AutoModelForCausalLM.from_pretrained(
|
51 |
+
model_name,
|
52 |
+
torch_dtype="auto",
|
53 |
+
device_map="auto"
|
54 |
+
)
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
56 |
+
|
57 |
+
prompt = "How many hours in one day?"
|
58 |
+
messages = [
|
59 |
+
{"role": "system", "content": "You are a helpful friendly assistant Falcon3 from TII, try to follow instructions as much as possible."},
|
60 |
+
{"role": "user", "content": prompt}
|
61 |
+
]
|
62 |
+
text = tokenizer.apply_chat_template(
|
63 |
+
messages,
|
64 |
+
tokenize=False,
|
65 |
+
add_generation_prompt=True
|
66 |
+
)
|
67 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
68 |
+
|
69 |
+
generated_ids = model.generate(
|
70 |
+
**model_inputs,
|
71 |
+
max_new_tokens=1024
|
72 |
+
)
|
73 |
+
generated_ids = [
|
74 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
75 |
+
]
|
76 |
+
|
77 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
78 |
+
print(response)
|
79 |
+
```
|
80 |
+
|
81 |
+
</details>
|
82 |
+
|
83 |
+
|
84 |
+
# Training Details
|
85 |
+
Based on `tiiuae/Falcon3-7B-Base`, post-training stage is comprised of supervised finetuning followed by human preference alignement (DPO).
|
86 |
+
|
87 |
+
## Supervised finetuning
|
88 |
+
### Training Data
|
89 |
+
1.2 million diverse, high-quality samples Tulu-3, Open-Hermes, Numina an Apigen.
|
90 |
+
|
91 |
+
| Data type | ratio |
|
92 |
+
|--------------------------------------|-------|
|
93 |
+
| Conversations | 32% |
|
94 |
+
| STEM | 32% |
|
95 |
+
| Code | 12% |
|
96 |
+
| Safety | 9.1% |
|
97 |
+
| Multi lingual | 8.3% |
|
98 |
+
| Function call | 3.3% |
|
99 |
+
| NLP (summarization, generation, QA) | 3.2% |
|
100 |
+
|
101 |
+
#### Training Hyperparameters
|
102 |
+
|
103 |
+
<style type="text/css">
|
104 |
+
.tg {border-collapse:collapse;border-spacing:0;}
|
105 |
+
.tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
|
106 |
+
overflow:hidden;padding:10px 5px;word-break:normal;}
|
107 |
+
.tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
|
108 |
+
font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;}
|
109 |
+
.tg .tg-c3ow{border-color:inherit;text-align:center;vertical-align:top}
|
110 |
+
.tg .tg-7btt{border-color:inherit;font-weight:bold;text-align:center;vertical-align:top}
|
111 |
+
.tg .tg-0pky{border-color:inherit;text-align:left;vertical-align:top}
|
112 |
+
.tg .tg-ihkz{border-color:inherit;text-align:center;vertical-align:top}
|
113 |
+
.tg .tg-pcvp{border-color:inherit;text-align:left;vertical-align:top}
|
114 |
+
.tg .tg-j2vi{border-color:inherit;font-weight:bold;text-align:center;vertical-align:top}
|
115 |
+
.tg .tg-amwm{border-color:inherit;text-align:left;vertical-align:top}
|
116 |
+
.tg .tg-0lax{border-color:inherit;font-weight:bold;text-align:center;vertical-align:top}
|
117 |
+
</style>
|
118 |
+
<table class="tg"><thead>
|
119 |
+
<tr>
|
120 |
+
<th class="tg-7btt" rowspan="3">AdamW</th>
|
121 |
+
<th class="tg-c3ow">β1</th>
|
122 |
+
<th class="tg-0pky">0.9</th>
|
123 |
+
</tr>
|
124 |
+
<tr>
|
125 |
+
<th class="tg-ihkz">β2</th>
|
126 |
+
<th class="tg-pcvp">0.999</th>
|
127 |
+
</tr>
|
128 |
+
<tr>
|
129 |
+
<th class="tg-c3ow">weight decay</th>
|
130 |
+
<th class="tg-0pky">0.01</th>
|
131 |
+
</tr></thead>
|
132 |
+
<tbody>
|
133 |
+
<tr>
|
134 |
+
<td class="tg-j2vi" rowspan="4">Learning rate</td>
|
135 |
+
<td class="tg-ihkz">type</td>
|
136 |
+
<td class="tg-pcvp">linear decay</td>
|
137 |
+
</tr>
|
138 |
+
<tr>
|
139 |
+
<td class="tg-c3ow">init lr</td>
|
140 |
+
<td class="tg-0pky">5e-6</td>
|
141 |
+
</tr>
|
142 |
+
<tr>
|
143 |
+
<td class="tg-ihkz">final lr</td>
|
144 |
+
<td class="tg-pcvp">0</td>
|
145 |
+
</tr>
|
146 |
+
<tr>
|
147 |
+
<td class="tg-c3ow">warm rate</td>
|
148 |
+
<td class="tg-0pky">0.03</td>
|
149 |
+
</tr>
|
150 |
+
<tr>
|
151 |
+
<td class="tg-j2vi">Batch size</td>
|
152 |
+
<td class="tg-ihkz"></td>
|
153 |
+
<td class="tg-pcvp">64</td>
|
154 |
+
</tr>
|
155 |
+
<tr>
|
156 |
+
<td class="tg-amwm">Epochs</td>
|
157 |
+
<td class="tg-0lax"></td>
|
158 |
+
<td class="tg-0lax">2</td>
|
159 |
+
</tr>
|
160 |
+
</tbody>
|
161 |
+
</table>
|
162 |
+
|
163 |
+
## Human preference alignment - DPO
|
164 |
+
|
165 |
+
### Training Data
|
166 |
+
TO DO DO DO DO
|
167 |
+
|
168 |
+
#### Training Hyperparameters
|
169 |
+
TODODODODOD
|
170 |
+
|
171 |
+
|
172 |
+
# Evaluation
|
173 |
+
We report in the following table our internal pipeline benchmarks:
|
174 |
+
|
175 |
+
|
176 |
+
<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
|
177 |
+
<colgroup>
|
178 |
+
<col style="width: 10%;">
|
179 |
+
<col style="width: 10%;">
|
180 |
+
<col style="width: 7%;">
|
181 |
+
<col style="width: 7%;">
|
182 |
+
<col style="width: 7%;">
|
183 |
+
<col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
|
184 |
+
</colgroup>
|
185 |
+
<thead>
|
186 |
+
<tr>
|
187 |
+
<th>Category</th>
|
188 |
+
<th>Benchmark</th>
|
189 |
+
<th>Llama-3.1-8B-Instruct</th>
|
190 |
+
<th>Qwen2-7B-Instruct</th>
|
191 |
+
<th>Qwen2.5-7B-Instruct</th>
|
192 |
+
<th>Falcon3-7B-Instruct</th>
|
193 |
+
</tr>
|
194 |
+
</thead>
|
195 |
+
<tbody>
|
196 |
+
<tr>
|
197 |
+
<td rowspan="3">General</td>
|
198 |
+
<td>MMLU (5-shot)</td>
|
199 |
+
<td>-</td>
|
200 |
+
<td>-</td>
|
201 |
+
<td>-</td>
|
202 |
+
<td>-</td>
|
203 |
+
</tr>
|
204 |
+
<tr>
|
205 |
+
<td>MMLU-PRO (5-shot)</td>
|
206 |
+
<td>-</td>
|
207 |
+
<td>-</td>
|
208 |
+
<td>-</td>
|
209 |
+
<td>-</td>
|
210 |
+
</tr>
|
211 |
+
<tr>
|
212 |
+
<td>IFEval</td>
|
213 |
+
<td>-</td>
|
214 |
+
<td>-</td>
|
215 |
+
<td>-</td>
|
216 |
+
<td>-</td>
|
217 |
+
</tr>
|
218 |
+
<tr>
|
219 |
+
<td rowspan="2">Math</td>
|
220 |
+
<td>GSM8K (5-shot)</td>
|
221 |
+
<td>-</td>
|
222 |
+
<td>-</td>
|
223 |
+
<td>-</td>
|
224 |
+
<td>-</td>
|
225 |
+
</tr>
|
226 |
+
<tr>
|
227 |
+
<td>MATH(4-shot)</td>
|
228 |
+
<td>-</td>
|
229 |
+
<td>-</td>
|
230 |
+
<td>-</td>
|
231 |
+
<td>-</td>
|
232 |
+
</tr>
|
233 |
+
<tr>
|
234 |
+
<td rowspan="4">Reasoning</td>
|
235 |
+
<td>Arc Challenge (25-shot)</td>
|
236 |
+
<td>-</td>
|
237 |
+
<td>-</td>
|
238 |
+
<td>-</td>
|
239 |
+
<td>-</td>
|
240 |
+
</tr>
|
241 |
+
<tr>
|
242 |
+
<td>GPQA (0-shot)</td>
|
243 |
+
<td>-</td>
|
244 |
+
<td>-</td>
|
245 |
+
<td>-</td>
|
246 |
+
<td>-</td>
|
247 |
+
</tr>
|
248 |
+
<tr>
|
249 |
+
<td>MUSR (0-shot)</td>
|
250 |
+
<td>-</td>
|
251 |
+
<td>-</td>
|
252 |
+
<td>-</td>
|
253 |
+
<td>-</td>
|
254 |
+
</tr>
|
255 |
+
<tr>
|
256 |
+
<td>BBH (3-shot)</td>
|
257 |
+
<td>-</td>
|
258 |
+
<td>-</td>
|
259 |
+
<td>-</td>
|
260 |
+
<td>-</td>
|
261 |
+
</tr>
|
262 |
+
<tr>
|
263 |
+
<td rowspan="4">CommonSense Understanding</td>
|
264 |
+
<td>PIQA (0-shot)</td>
|
265 |
+
<td>-</td>
|
266 |
+
<td>-</td>
|
267 |
+
<td>-</td>
|
268 |
+
<td>-</td>
|
269 |
+
</tr>
|
270 |
+
<tr>
|
271 |
+
<td>SciQ (0-shot)</td>
|
272 |
+
<td>-</td>
|
273 |
+
<td>-</td>
|
274 |
+
<td>-</td>
|
275 |
+
<td>-</td>
|
276 |
+
</tr>
|
277 |
+
<tr>
|
278 |
+
<td>Winogrande (0-shot)</td>
|
279 |
+
<td>-</td>
|
280 |
+
<td>-</td>
|
281 |
+
<td>-</td>
|
282 |
+
<td>-</td>
|
283 |
+
</tr>
|
284 |
+
<tr>
|
285 |
+
<td>OpenbookQA (0-shot)</td>
|
286 |
+
<td>-</td>
|
287 |
+
<td>-</td>
|
288 |
+
<td>-</td>
|
289 |
+
<td>-</td>
|
290 |
+
</tr>
|
291 |
+
</tbody>
|
292 |
+
</table>
|
293 |
+
|
294 |
+
|
295 |
+
# Citation
|
296 |
+
If Falcon3 series were helpful to your work, feel free to give us a cite.
|
297 |
+
|
298 |
+
```
|
299 |
+
@misc{Falcon3,
|
300 |
+
title = {Falcon 3 family of Open Foundation Models},
|
301 |
+
author = {TII Team},
|
302 |
+
month = {December},
|
303 |
+
year = {2024}
|
304 |
+
}
|
305 |
+
```
|