File size: 3,586 Bytes
a7bb592
 
fd6a8e6
 
 
d72b794
a7bb592
 
fd6a8e6
a7bb592
 
fd6a8e6
a7bb592
fd6a8e6
 
 
 
 
 
a7bb592
 
fd6a8e6
a7bb592
fd6a8e6
a7bb592
fd6a8e6
a7bb592
fd6a8e6
 
 
 
 
a7bb592
fd6a8e6
a7bb592
fd6a8e6
 
a7bb592
 
fd6a8e6
a7bb592
fd6a8e6
a7bb592
fd6a8e6
a7bb592
fd6a8e6
 
 
a7bb592
fd6a8e6
a7bb592
fd6a8e6
 
 
 
a7bb592
fd6a8e6
 
a7bb592
fd6a8e6
a7bb592
fd6a8e6
 
 
 
 
 
a7bb592
fd6a8e6
70bff75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7bb592
fd6a8e6
a7bb592
fd6a8e6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
---
library_name: transformers
tags:
- bitnet
- falcon3
base_model: tiiuae/Falcon3-3B-Base
---

![image/png](https://cdn-uploads.huggingface.co/production/uploads/62441d1d9fdefb55a0b7d12c/c-tosr0FvMlKuKQTojx_6.png)


#  Table of Contents

0. [TL;DR](#TL;DR)
1. [Model Details](#model-details)
2. [Training Details](#training-details)
3. [Usage](#usage)
4. [Evaluation](#evaluation)
5. [Citation](#citation)


# TL;DR

# Model Details

## Model Description

- **Developed by:** [https://www.tii.ae](https://www.tii.ae)
- **Model type:** Causal decoder-only
- **Architecture:** Pure-transformer - 1.58bit version
- **Language(s) (NLP):** Mainly English
- **License:** TII Falcon License 2.0

# Training details

The model has been trained following the training strategies from the recent [1-bit LLM HF blogpost](https://huggingface.co/blog/1_58_llm_extreme_quantization) and [1-bit LLM paper](https://github.com/microsoft/unilm/blob/master/bitnet/The-Era-of-1-bit-LLMs__Training_Tips_Code_FAQ.pdf).
For more details about the training protocol of this model, please refer to the Falcon-3 technical report, section *Compression*.


# Usage

Currently to use this model you can either rely on Hugging Face transformers library or [BitNet](https://github.com/microsoft/BitNet) library. You can also play with the model using the [falcon-1.58bit playground](https://huggingface.co/spaces/tiiuae/falcon3-1.58bit-playground) (only for the 7B instruct version).

## 🤗 transformers

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "tiiuae/Falcon3-3B-Base-1.58bit"

model = AutoModelForCausalLM.from_pretrained(
  model_id,
  torch_dtype=torch.bfloat16,
).to("cuda")

# Perform text generation
```

## BitNet

```
git clone https://github.com/microsoft/BitNet && cd BitNet
pip install -r requirements.txt
python setup_env.py --hf-repo tiiuae/Falcon3-3B-Base-1.58bit -q i2_s
python run_inference.py -m models/Falcon3-3B-Base-1.58bit/ggml-model-i2_s.gguf -p "Hi how are you doing today?" -cnv
```

# Evaluation
We report in the following table our internal pipeline benchmarks:

**Note evaluation results are normalized score from v2 leaderboard tasks - reported results of original models in the blogpost are raw scores**

<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
    <colgroup>
        <col style="width: 10%;">
        <col style="width: 10%;">
        <col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
    </colgroup>
    <thead>
        <tr>
            <th>Benchmark</th>
            <th>Llama3-8B-1.58-100B-tokens</th>
            <th>Falcon3-7B-Instruct-1.58bit </th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td>IFEval</td>
            <td>17.91</td>
            <td><b>27.49</b></td>
        </tr>      
        <tr>
            <td>MUSR</td>
            <td><b>4.87</b></td>
            <td>4.64</td>
        </tr>
        <tr>
            <td>GPQA</td>
            <td><b>1.83<b></td>
            <td>0.00</td>
        </tr>
        <tr>
            <td>BBH</td>
            <td>5.36</td>
            <td><b>2.97</b></td>
        </tr>
        <tr>
            <td>MMLU-PRO</td>
            <td><b>2.78<b></td>
            <td><b>1.47</b></td>
        </tr>      
        <tr>
            <td>MATH</td>
            <td>0.26</td>
            <td><b>0.43</b></td>
        </tr>
        <tr>
            <td>Average</td>
            <td>5.5</td>
            <td><b>6.17</b></td>
        </tr>          
    </tbody>
</table>

# Citation

Coming soon ..