vxbrandon commited on
Commit
a949574
1 Parent(s): 60b09bd

End of training

Browse files
Files changed (1) hide show
  1. README.md +91 -0
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: t5-large
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - glue
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: t5-large_sst2_dense_epochs-5
12
+ results:
13
+ - task:
14
+ name: Text Classification
15
+ type: text-classification
16
+ dataset:
17
+ name: glue
18
+ type: glue
19
+ config: sst2
20
+ split: validation
21
+ args: sst2
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.9541284403669725
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # t5-large_sst2_dense_epochs-5
32
+
33
+ This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the glue dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.3623
36
+ - Accuracy: 0.9541
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 256
57
+ - eval_batch_size: 256
58
+ - seed: 0
59
+ - distributed_type: multi-GPU
60
+ - gradient_accumulation_steps: 2
61
+ - total_train_batch_size: 512
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - lr_scheduler_warmup_steps: 20
65
+ - num_epochs: 5
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
71
+ | 0.2263 | 0.38 | 50 | 0.1874 | 0.9404 |
72
+ | 0.1549 | 0.76 | 100 | 0.1661 | 0.9438 |
73
+ | 0.1321 | 1.14 | 150 | 0.3832 | 0.9484 |
74
+ | 0.1153 | 1.52 | 200 | 0.2551 | 0.9484 |
75
+ | 0.1135 | 1.89 | 250 | 0.1375 | 0.9530 |
76
+ | 0.0823 | 2.27 | 300 | 0.4848 | 0.9495 |
77
+ | 0.1417 | 2.65 | 350 | 0.3618 | 0.9484 |
78
+ | 0.0763 | 3.03 | 400 | 0.3594 | 0.9530 |
79
+ | 0.0959 | 3.41 | 450 | 0.3692 | 0.9576 |
80
+ | 0.0925 | 3.79 | 500 | 0.3623 | 0.9541 |
81
+ | 0.1089 | 4.17 | 550 | 0.4750 | 0.9576 |
82
+ | 0.0758 | 4.55 | 600 | 0.8276 | 0.9472 |
83
+ | 0.0792 | 4.92 | 650 | 0.5894 | 0.9553 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - Transformers 4.34.1
89
+ - Pytorch 2.1.0+cu118
90
+ - Datasets 2.14.6
91
+ - Tokenizers 0.14.1