vxbrandon commited on
Commit
8c22c40
·
1 Parent(s): b59411b

End of training

Browse files
Files changed (1) hide show
  1. README.md +90 -0
README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: t5-base
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - glue
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: t5-base_cola_moe_ex16_epochs-5_collected-stats
12
+ results:
13
+ - task:
14
+ name: Text Classification
15
+ type: text-classification
16
+ dataset:
17
+ name: glue
18
+ type: glue
19
+ config: cola
20
+ split: validation
21
+ args: cola
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8302972195589645
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # t5-base_cola_moe_ex16_epochs-5_collected-stats
32
+
33
+ This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the glue dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.5254
36
+ - Accuracy: 0.8303
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 64
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 2
60
+ - total_train_batch_size: 64
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_steps: 20
64
+ - num_epochs: 5
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 0.5766 | 0.37 | 50 | 0.5459 | 0.7009 |
71
+ | 0.4641 | 0.75 | 100 | 0.4948 | 0.7996 |
72
+ | 0.3657 | 1.12 | 150 | 0.5502 | 0.8111 |
73
+ | 0.4043 | 1.49 | 200 | 0.4791 | 0.8198 |
74
+ | 0.3875 | 1.87 | 250 | 0.4936 | 0.8217 |
75
+ | 0.3507 | 2.24 | 300 | 0.4735 | 0.8217 |
76
+ | 0.3255 | 2.61 | 350 | 0.5022 | 0.8198 |
77
+ | 0.3407 | 2.99 | 400 | 0.5193 | 0.8265 |
78
+ | 0.2576 | 3.36 | 450 | 0.5292 | 0.8303 |
79
+ | 0.3138 | 3.73 | 500 | 0.5254 | 0.8303 |
80
+ | 0.2866 | 4.1 | 550 | 0.5132 | 0.8313 |
81
+ | 0.284 | 4.48 | 600 | 0.5314 | 0.8274 |
82
+ | 0.3607 | 4.85 | 650 | 0.5357 | 0.8293 |
83
+
84
+
85
+ ### Framework versions
86
+
87
+ - Transformers 4.34.1
88
+ - Pytorch 2.1.0+cu118
89
+ - Datasets 2.14.5
90
+ - Tokenizers 0.14.1