lukeleeai commited on
Commit
7978c79
·
verified ·
1 Parent(s): 9af5638

End of training

Browse files
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: meta-llama/Llama-2-7b-hf
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: llama_7b_hf_relu_refined_web_relu_2024-03-26
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # llama_7b_hf_relu_refined_web_relu_2024-03-26
14
+
15
+ This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 2.1119
18
+
19
+ ## Model description
20
+
21
+ More information needed
22
+
23
+ ## Intended uses & limitations
24
+
25
+ More information needed
26
+
27
+ ## Training and evaluation data
28
+
29
+ More information needed
30
+
31
+ ## Training procedure
32
+
33
+ ### Training hyperparameters
34
+
35
+ The following hyperparameters were used during training:
36
+ - learning_rate: 1e-05
37
+ - train_batch_size: 1
38
+ - eval_batch_size: 1
39
+ - seed: 0
40
+ - distributed_type: multi-GPU
41
+ - num_devices: 8
42
+ - gradient_accumulation_steps: 8
43
+ - total_train_batch_size: 64
44
+ - total_eval_batch_size: 8
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - training_steps: 100
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss |
52
+ |:-------------:|:-----:|:----:|:---------------:|
53
+ | 2.2411 | 0.02 | 25 | 2.3762 |
54
+ | 2.1753 | 0.03 | 50 | 2.3730 |
55
+ | 2.239 | 0.05 | 75 | 2.3683 |
56
+ | 2.2941 | 0.06 | 100 | 2.3630 |
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - Transformers 4.36.2
62
+ - Pytorch 2.1.1+cu121
63
+ - Datasets 2.15.0
64
+ - Tokenizers 0.15.2
config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "meta-llama/Llama-2-7b-hf",
3
+ "architectures": [
4
+ "SparseLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "ugly_utils.SparseLlamaConfig",
10
+ "AutoModelForCausalLM": "ugly_utils.SparseLlamaForCausalLM"
11
+ },
12
+ "bos_token_id": 1,
13
+ "eos_token_id": 2,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 4096,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 11008,
18
+ "max_position_embeddings": 4096,
19
+ "model_type": "sparse_llama",
20
+ "num_attention_heads": 32,
21
+ "num_hidden_layers": 32,
22
+ "num_key_value_heads": 32,
23
+ "pretraining_tp": 1,
24
+ "rms_norm_eps": 1e-05,
25
+ "rope_scaling": null,
26
+ "rope_theta": 10000.0,
27
+ "thresholds": [
28
+ 0.0,
29
+ 0.0,
30
+ 0.0,
31
+ 0.0,
32
+ 0.0,
33
+ 0.0,
34
+ 0.0,
35
+ 0.0,
36
+ 0.0,
37
+ 0.0,
38
+ 0.0,
39
+ 0.0,
40
+ 0.0,
41
+ 0.0,
42
+ 0.0,
43
+ 0.0,
44
+ 0.0,
45
+ 0.0,
46
+ 0.0,
47
+ 0.0,
48
+ 0.0,
49
+ 0.0,
50
+ 0.0,
51
+ 0.0,
52
+ 0.0,
53
+ 0.0,
54
+ 0.0,
55
+ 0.0,
56
+ 0.0,
57
+ 0.0,
58
+ 0.0,
59
+ 0.0
60
+ ],
61
+ "tie_word_embeddings": false,
62
+ "torch_dtype": "bfloat16",
63
+ "transformers_version": "4.36.2",
64
+ "us_sparse_regularization": false,
65
+ "use_cache": false,
66
+ "use_graceful_regularization": false,
67
+ "use_relu": true,
68
+ "use_sparse_model": true,
69
+ "use_sparse_predictor": false,
70
+ "use_sparse_regularization": false,
71
+ "vocab_size": 32000
72
+ }
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.36.2"
10
+ }
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:479cad632f25299db57067ab232358cec2f1ddedbb6c0ff3d89a49a31f9a789d
3
+ size 4938985352
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b85dfc339a1d7ff371417240bdb47b5f01916890cbba26b353098f227653859d
3
+ size 4947390880
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5956bc517ddeda2abf45d3c3474bf049137a09a80c729c2357a9dc715b6abc5d
3
+ size 3590488816
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13476831232
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.norm.weight": "model-00003-of-00003.safetensors"
297
+ }
298
+ }
ugly_utils.py ADDED
@@ -0,0 +1,1089 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Tuple
2
+ import torch
3
+ import torch.nn as nn
4
+ from torch.nn import MSELoss
5
+ import matplotlib.pyplot as plt
6
+ import numpy as np
7
+ import os
8
+ import time
9
+ import os
10
+ import copy
11
+ import warnings
12
+ from datasets import Dataset
13
+ from peft import PeftModel
14
+ from transformers import TrainerCallback
15
+ import matplotlib.pyplot as plt
16
+ import numpy as np
17
+ import time
18
+ import os
19
+ import copy
20
+ from transformers import Trainer
21
+ from typing import Any, Dict, Union
22
+ import torch
23
+ import torch.nn as nn
24
+ import torch.nn.functional as F
25
+
26
+ # from experiments.models.sparse_silu.utils import get_mlp_class, get_decoder_class
27
+
28
+
29
+ from utils.utils import is_running_deepspeed, is_mainprocess, ds_print, get_model_type, get_model_type_from_name
30
+ from utils.constants import MISTRAL
31
+ from transformers.configuration_utils import PretrainedConfig
32
+
33
+ # Mistral
34
+ from transformers.models.mistral.modeling_mistral import MistralMLP, MistralDecoderLayer, MistralConfig, MistralForCausalLM, MistralModel
35
+ from experiments.models.sparse_mistral.svd_router import (
36
+ low_rank_approximation,
37
+ )
38
+
39
+ # Llama
40
+ from transformers.models.llama.modeling_llama import (
41
+ LlamaModel,
42
+ LlamaMLP,
43
+ LlamaDecoderLayer,
44
+ LlamaConfig,
45
+ LlamaForCausalLM,
46
+ )
47
+
48
+
49
+ def get_mlp_class(model):
50
+ model_type = get_model_type(model)
51
+ return MistralSparseSiluMLP if model_type == MISTRAL else LlamaSparseSiluMLP
52
+
53
+
54
+ def get_decoder_class(model):
55
+ model_type = get_model_type(model)
56
+ return SparseMistralDecoderLayer if model_type == MISTRAL else LlamaSparseDecoderLayer
57
+
58
+
59
+ def get_model_class(model):
60
+ model_type = get_model_type(model)
61
+ return MistralModel if model_type == MISTRAL else LlamaModel
62
+
63
+
64
+ class SparseSiLU(nn.SiLU):
65
+ def __init__(self, threshold):
66
+ super(SparseSiLU, self).__init__()
67
+ self.threshold = threshold
68
+ self.m = nn.Threshold(self.threshold, 0)
69
+
70
+ def set_new_threshold(self, threshold):
71
+ self.threshold = threshold
72
+ self.m = nn.Threshold(threshold, 0)
73
+
74
+ def forward(self, x):
75
+ act = super(SparseSiLU, self).forward(x)
76
+ return self.m(act) - self.m(-act)
77
+
78
+
79
+ def get_sparse_config(
80
+ config: PretrainedConfig,
81
+ model_type: str = None,
82
+ use_sparse_model=False,
83
+ use_sparse_predictor=False,
84
+ use_sparse_regularization=False,
85
+ use_graceful_regularization=False,
86
+ thresholds=None,
87
+ ):
88
+ if model_type == MISTRAL:
89
+ new_config = SparseMistralConfig()
90
+ else:
91
+ new_config = SparseLlamaConfig()
92
+ new_config.__dict__.update(config.__dict__)
93
+ config = new_config
94
+ config.use_sparse_model = use_sparse_model
95
+ config.use_sparse_predictor = use_sparse_predictor
96
+ config.use_sparse_regularization = use_sparse_regularization
97
+ config.use_graceful_regularization = use_graceful_regularization
98
+ config.thresholds = thresholds
99
+
100
+ return config
101
+
102
+
103
+ def apply_sparse_silu_mlp(
104
+ model,
105
+ config,
106
+ use_sparse_regularization: bool = False,
107
+ ):
108
+ SparseMLP = get_mlp_class(model)
109
+ for layer in model.model.layers:
110
+ original_mlp = layer.mlp
111
+ new_mlp = SparseMLP(config, use_sparse_regularization=use_sparse_regularization)
112
+ new_mlp.gate_proj = original_mlp.gate_proj
113
+ new_mlp.up_proj = original_mlp.up_proj
114
+ new_mlp.down_proj = original_mlp.down_proj
115
+ layer.mlp = new_mlp
116
+
117
+
118
+ def apply_sparse_decoder_layer(
119
+ model,
120
+ config,
121
+ init_svd: bool = True,
122
+ ):
123
+ Model = get_model_type(model)
124
+ SparseMLP = get_mlp_class(model)
125
+ DecoderLayer = get_decoder_class(model)
126
+
127
+ assert isinstance(model.model, Model), "model.model must be a MistralModel."
128
+ new_layers = []
129
+ for layer_idx, layer in enumerate(model.model.layers):
130
+ if isinstance(layer.mlp, SparseMLP):
131
+ new_layers.append(
132
+ DecoderLayer(
133
+ config=config,
134
+ layer_idx=layer_idx,
135
+ decoder_layer=layer,
136
+ init_svd=init_svd,
137
+ )
138
+ )
139
+ print(f"{layer_idx}th mlp layer activation: {layer.mlp.sparse_act_fn}")
140
+ else:
141
+ new_layers.append(layer)
142
+ model.model.layers = nn.ModuleList(new_layers)
143
+
144
+
145
+ def enable_sparse_predictor(
146
+ model,
147
+ ):
148
+ DecoderLayer = get_decoder_class(model)
149
+ for layer_idx, layer in enumerate(model.model.layers):
150
+ if isinstance(layer, DecoderLayer):
151
+ layer.use_sparse_predictor = True
152
+
153
+
154
+ def disable_sparse_predictor(
155
+ model,
156
+ ):
157
+ DecoderLayer = get_decoder_class(model)
158
+ for layer_idx, layer in enumerate(model.model.layers):
159
+ if isinstance(layer, DecoderLayer):
160
+ layer.use_sparse_predictor = False
161
+
162
+
163
+ def activate_stats(model, is_collect_histogram: bool = True):
164
+ SparseMLP = get_mlp_class(model)
165
+ for layer in model.model.layers:
166
+ if isinstance(layer.mlp, SparseMLP):
167
+ layer.mlp.activate_stats(is_collect_histogram=is_collect_histogram)
168
+
169
+
170
+ def deactivate_stats(
171
+ model,
172
+ ):
173
+ SparseMLP = get_mlp_class(model)
174
+ for layer in model.model.layers:
175
+ if isinstance(layer.mlp, SparseMLP):
176
+ layer.mlp.deactivate_stats()
177
+
178
+
179
+ def enable_sparse_silu(model):
180
+ print("Enabling SparseSilu")
181
+ SparseMLP = get_mlp_class(model)
182
+ for i, layer in enumerate(model.model.layers):
183
+ if isinstance(layer.mlp, SparseMLP):
184
+ layer.mlp.kill_sparse_swish_outputs = True
185
+
186
+
187
+ def disable_sparse_silu(model):
188
+ print("Disabling SparseSilu")
189
+ SparseMLP = get_mlp_class(model)
190
+ for i, layer in enumerate(model.model.layers):
191
+ if isinstance(layer.mlp, SparseMLP):
192
+ layer.mlp.kill_sparse_swish_outputs = False
193
+
194
+
195
+ def print_dead_neuron_stats(model):
196
+ SparseMLP = get_mlp_class(model)
197
+ total_sparsity = 0
198
+ counts = 0
199
+ for i, layer in enumerate(model.model.layers):
200
+ if isinstance(layer.mlp, SparseMLP):
201
+ dead_percentage = layer.mlp.dead_percentage * 100
202
+ agg_sparsity = layer.mlp.agg_sparsity * 100
203
+ # ds_print(f"layer {i} sparsity: {dead_percentage:.3f}%")
204
+ # ds_print(f"layer {i} agg sparsity: {agg_sparsity:.3f}%")
205
+ total_sparsity += dead_percentage
206
+ counts += 1
207
+
208
+ ds_print(f"Total sparsity: {total_sparsity/counts: .3f}%")
209
+ return total_sparsity / counts
210
+
211
+
212
+ def get_sparse_layers(model):
213
+ SparseMLP = get_mlp_class(model)
214
+ sparse_layers = [m.mlp for m in model.layers() if isinstance(m.mlp, SparseMLP)]
215
+ return sparse_layers
216
+
217
+
218
+ def get_threshold(bin_edges: torch.tensor, histogram_counts: torch.tensor, sparsity_level: float): # Only for L1 Regularization
219
+ assert len(bin_edges.shape) == len(histogram_counts.shape) == 1, "bin_edges and histogram are expected to be 1-dimensional."
220
+ histogram_counts /= histogram_counts.sum()
221
+ threshold_idx = torch.searchsorted(histogram_counts.cumsum(0), sparsity_level, side="right")
222
+
223
+ return bin_edges[threshold_idx]
224
+
225
+
226
+ def set_regularization_threshold(model, threshold: float = 0.1):
227
+ SparseMLP = get_mlp_class(model)
228
+ for i, layer in enumerate(model.model.layers):
229
+ if isinstance(layer.mlp, SparseMLP) and layer.mlp.is_stats: # Can set the threshold only the relevant statistics is collected.
230
+ layer.mlp.regularization_threshold = threshold # TODO: find better param
231
+
232
+
233
+ def set_sparse_threshold(model, sparsity_level: float, use_relu: bool = False):
234
+ SparseMLP = get_mlp_class(model)
235
+ for i, layer in enumerate(model.model.layers):
236
+ if isinstance(layer.mlp, SparseMLP) and layer.mlp.is_stats: # Can set the threshold only the relevant statistics is collected.
237
+ if use_relu:
238
+ layer.mlp.sparse_act_fn = nn.ReLU()
239
+ layer.mlp.use_relu = True
240
+ else:
241
+ layer.mlp.dead_threshold = get_threshold(
242
+ layer.mlp.histogram_bins,
243
+ layer.mlp.post_act_hist_counts,
244
+ sparsity_level,
245
+ )
246
+ layer.mlp.sparse_act_fn.set_new_threshold(layer.mlp.dead_threshold)
247
+ layer.mlp.regularization_threshold = layer.mlp.dead_threshold * 1.2 # TODO: find better param
248
+
249
+
250
+ def plot_histogram(
251
+ bin_edges,
252
+ histogram_counts: torch.tensor,
253
+ title: str = "Activation Distribution",
254
+ fig_dir: str = "figures",
255
+ ):
256
+ plt.bar(bin_edges[:-1], histogram_counts, width=np.diff(bin_edges), edgecolor="black")
257
+ plt.title(title)
258
+ plt.xlabel("Activation Value")
259
+ plt.ylabel("Frequency")
260
+ os.makedirs(fig_dir, exist_ok=True)
261
+ plt.savefig(f"{fig_dir}/{title}.png")
262
+ # plt.show()
263
+ plt.clf()
264
+
265
+
266
+ def plot_act(model, fig_dir: str = "figures"):
267
+ SparseMLP = get_mlp_class(model)
268
+
269
+ for i, layer in enumerate(model.model.layers):
270
+ if isinstance(layer.mlp, SparseMLP) and layer.mlp.is_stats: # Can set the threshold only the relevant statistics is collected.
271
+ plot_title = f"Layer: {i} Pre-Activation Distribution"
272
+ plot_histogram(layer.mlp.histogram_bins, layer.mlp.pre_act_hist_counts, plot_title)
273
+
274
+ plot_title = f"Layer: {i} Post-Activation Absolute Distribution"
275
+ plot_histogram(layer.mlp.histogram_bins, layer.mlp.post_act_hist_counts, plot_title)
276
+
277
+
278
+ def save_act_hist(model, filename="/scr/jay/models/mistral/pre_finetune/cola_act_hist.pt"):
279
+ SparseMLP = get_mlp_class(model)
280
+ os.makedirs(os.path.dirname(filename), exist_ok=True)
281
+ act_dict = {}
282
+ for i, layer in enumerate(model.model.layers):
283
+ if isinstance(layer.mlp, SparseMLP) and layer.mlp.is_stats: # Can set the threshold only the relevant statistics is collected.
284
+ act_dict[i] = (
285
+ layer.mlp.histogram_bins,
286
+ layer.mlp.pre_act_hist_counts,
287
+ layer.mlp.post_act_hist_counts,
288
+ )
289
+ print("Saving activation histograms...\n\n\n")
290
+ torch.save(act_dict, filename)
291
+
292
+
293
+ def load_act_hist(model, filename="/scr/jay/models/mistral/pre_finetune/cola_act_hist.pt"):
294
+ assert os.path.exists(filename), f"{filename} does not exist when loading pre/post-activation histogram of SparseMistralSiluMLP."
295
+ SparseMLP = get_mlp_class(model)
296
+
297
+ print("Loading activation histograms...\n\n\n")
298
+
299
+ act_dict = torch.load(filename)
300
+ for i, layer in enumerate(model.model.layers):
301
+ if isinstance(layer.mlp, SparseMLP) and layer.mlp.is_stats: # Can set the threshold only the relevant statistics is collected.
302
+ (
303
+ layer.mlp.histogram_bins,
304
+ layer.mlp.pre_act_hist_counts,
305
+ layer.mlp.post_act_hist_counts,
306
+ ) = act_dict[i]
307
+
308
+
309
+ def enable_last_k_modules(model, start_module_idx: int):
310
+ assert 32 > start_module_idx >= 0
311
+ new_modules = []
312
+ new_idx = 0
313
+ for idx in range(start_module_idx, len(model.model.original_layers)):
314
+ module = model.model.original_layers[idx]
315
+ module.layer_idx = new_idx
316
+ module.self_attn.layer_idx = new_idx
317
+ new_modules.append(module)
318
+ new_idx += 1
319
+ print(module.layer_idx)
320
+
321
+ model.model.layers = nn.ModuleList(new_modules)
322
+
323
+
324
+ def enable_first_k_modules(model, end_module_idx: int):
325
+ assert 32 > end_module_idx >= 0
326
+ new_modules = []
327
+ new_idx = 0
328
+ for idx in range(0, end_module_idx + 1):
329
+ module = model.model.original_layers[idx]
330
+ module.layer_idx = new_idx
331
+ module.self_attn.layer_idx = new_idx
332
+ new_modules.append(module)
333
+ new_idx += 1
334
+ print(module.layer_idx)
335
+
336
+ model.model.layers = nn.ModuleList(new_modules)
337
+
338
+
339
+ # MISTRAL
340
+
341
+
342
+ class MistralSparseSiluMLP(MistralMLP):
343
+ def __init__(self, config, *args, **kwargs):
344
+ super().__init__(config)
345
+ self.swish_outputs = None
346
+ self.relu = nn.ReLU()
347
+
348
+ self.kill_sparse_swish_outputs = False
349
+ self.dead_percentage = 0
350
+ self.is_stats = False
351
+ self.visit_counts = 0
352
+
353
+ # Hyperparameters to tune
354
+ self.dead_threshold = kwargs.pop("dead_threshold", 0)
355
+ self.use_sparse_regularization = kwargs.pop("use_sparse_regularization", True)
356
+ self.regularization_type = kwargs.pop("regularization_type", "L1 regularization")
357
+ self.regularization_threshold = kwargs.pop("regularization_threshold", 0.5)
358
+ self.use_relu = kwargs.pop("use_relu", False)
359
+ self.activation_norm = None
360
+
361
+ # Activation Histograms
362
+ self.is_collect_histogram = False
363
+ num_bins = 1000
364
+ self.histogram_bins = torch.linspace(-1, 1, num_bins - 2)
365
+ self.histogram_bins = torch.cat([torch.tensor([-torch.inf]), self.histogram_bins, torch.tensor([torch.inf])])
366
+ self.pre_act_hist_counts = torch.zeros(num_bins - 1)
367
+ self.post_act_hist_counts = torch.zeros(num_bins - 1)
368
+ self.t = 0
369
+ self.count = 0
370
+ self.agg_sparsity = 0
371
+
372
+ # Sparse activation function
373
+ self.sparse_act_fn = SparseSiLU(threshold=self.dead_threshold)
374
+
375
+ def activate_stats(self, is_collect_histogram: bool = True):
376
+ self.is_stats = True
377
+ self.dead_percentage = 0
378
+ self.visit_counts = 0
379
+ self.is_collect_histogram = is_collect_histogram
380
+ self.histogram_counts = torch.zeros(2000) # .to(self.down_proj.weight.device)
381
+
382
+ def deactivate_stats(self):
383
+ self.is_stats = False
384
+
385
+ def collect_stats(self, pre_activation, post_activation):
386
+ start_time = time.time()
387
+ pre_activation = pre_activation.float().cpu().detach()
388
+ post_activation = post_activation.float().cpu().detach()
389
+ # self.histogram_bins=self.histogram_bins.to(pre_activation.device).type(pre_activation.dtype)
390
+ self.pre_act_hist_counts += torch.histogram(pre_activation, bins=self.histogram_bins)[0]
391
+ self.post_act_hist_counts += torch.histogram(torch.abs(post_activation), bins=self.histogram_bins)[0]
392
+ self.t += time.time() - start_time
393
+ # if self.visit_counts % 30 == 0:
394
+ # print(f"Time taken to collect stats: {self.t}s.")
395
+
396
+ def forward(
397
+ self,
398
+ x,
399
+ sp_mask: torch.tensor = None,
400
+ ):
401
+ """
402
+ If kill_sparse_swish_outputs is set to False, this layer functions exactly like a normal MLP layer.
403
+ """
404
+ if sp_mask != None: # When sparse mask is given
405
+ return self.down_proj(
406
+ self.sparse_act_fn(self.gate_proj(x) * sp_mask) * self.up_proj(x)
407
+ ) # Todo: This doesn't accelerate runtime (instead slowing down)
408
+
409
+ elif self.use_relu:
410
+ post_act = self.relu(self.gate_proj(x))
411
+ self.count += 1
412
+ if self.count <= 1:
413
+ print("USING RELU!!!!")
414
+
415
+ if self.is_stats:
416
+ dead_neurons = post_act == 0
417
+ dead_percentage = dead_neurons.float().mean()
418
+ agg_sparsity = dead_neurons.all(dim=0).float().mean()
419
+
420
+ self.dead_percentage = (self.dead_percentage * self.visit_counts + dead_percentage) / (self.visit_counts + 1)
421
+ self.agg_sparsity = (self.agg_sparsity * self.visit_counts + agg_sparsity) / (self.visit_counts + 1)
422
+ self.visit_counts += 1
423
+
424
+ return self.down_proj(post_act * self.up_proj(x))
425
+
426
+ else:
427
+ self.count += 1
428
+ if self.count <= 1:
429
+ ds_print("USING SparseSILU!!!!")
430
+ pre_act = self.gate_proj(x)
431
+ post_act = self.act_fn(pre_act)
432
+ if self.kill_sparse_swish_outputs:
433
+ dead_neurons = post_act.abs() <= self.dead_threshold
434
+ # print("pre act sparsity: ", (pre_act==0).float().mean())
435
+
436
+ dead_percentage = dead_neurons.float().mean()
437
+ agg_sparsity = dead_neurons.all(dim=0).float().mean()
438
+
439
+ if self.is_stats:
440
+ self.dead_percentage = (self.dead_percentage * self.visit_counts + dead_percentage) / (self.visit_counts + 1)
441
+ self.agg_sparsity = (self.agg_sparsity * self.visit_counts + agg_sparsity) / (self.visit_counts + 1)
442
+ self.visit_counts += 1
443
+
444
+ self.a = dead_percentage
445
+
446
+ # Collect histogram stats
447
+ if self.is_collect_histogram and pre_act.eq(0).float().mean() < 0.99: # Padded dataset
448
+ self.collect_stats(pre_act, post_act)
449
+
450
+ if self.count <= 1:
451
+ ds_print("KILL!")
452
+ post_act[dead_neurons] = 0
453
+
454
+ out = self.down_proj(post_act * self.up_proj(x))
455
+ if self.use_sparse_regularization:
456
+ if self.regularization_type == "L1 regularization":
457
+ self.activation_norm = torch.abs(post_act)[torch.abs(post_act) < self.regularization_threshold].mean()
458
+ elif self.regularization_type == "L2 regularization":
459
+ self.activation_norm = torch.sqrt(torch.square(post_act)[torch.abs(post_act) < self.regularization_threshold]).mean()
460
+
461
+ return out
462
+
463
+
464
+ class SparseMistralDecoderLayer(MistralDecoderLayer):
465
+ def __init__(
466
+ self,
467
+ config: MistralConfig,
468
+ layer_idx: int,
469
+ decoder_layer: MistralDecoderLayer,
470
+ init_svd: bool = True,
471
+ *args,
472
+ **kwargs,
473
+ ):
474
+ assert isinstance(decoder_layer.mlp, MistralSparseSiluMLP), f"{type(decoder_layer.mlp)} should MistralSparseSiluMLP."
475
+
476
+ super().__init__(config, layer_idx)
477
+ self.hidden_size = config.hidden_size
478
+ self.intermediate_size = config.intermediate_size
479
+
480
+ self.init_svd = init_svd
481
+ self.self_attn = decoder_layer.self_attn
482
+
483
+ self.mlp = decoder_layer.mlp
484
+ self.input_layernorm = decoder_layer.input_layernorm
485
+ self.post_attention_layernorm = decoder_layer.post_attention_layernorm
486
+
487
+ # Sparse predictor for mlp (initialized with SVD decomposed matrix)
488
+ self.low_rank = kwargs.pop("low_rank", 64)
489
+ self.sparse_act_func = decoder_layer.mlp.sparse_act_fn
490
+
491
+ print(f"Setting {layer_idx}th mlp layer's sparse predictor... svd init: {init_svd}")
492
+ self.sp_mlp = low_rank_approximation(
493
+ decoder_layer.mlp.gate_proj,
494
+ act_func=self.sparse_act_func,
495
+ init_svd=init_svd,
496
+ )
497
+ self.use_async = kwargs.pop("use_async", False)
498
+ self.use_sparse_predictor = False
499
+ self.distill_loss = None
500
+
501
+ def forward(
502
+ self,
503
+ hidden_states: torch.Tensor,
504
+ attention_mask: Optional[torch.Tensor] = None,
505
+ position_ids: Optional[torch.LongTensor] = None,
506
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
507
+ output_attentions: Optional[bool] = False,
508
+ use_cache: Optional[bool] = False,
509
+ **kwargs,
510
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
511
+ print("hidden_states shape: ", hidden_states.shape)
512
+ if "padding_mask" in kwargs:
513
+ warnings.warn(
514
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
515
+ )
516
+
517
+ residual = hidden_states
518
+ sp_mask = None
519
+
520
+ if self.use_async:
521
+ sp_mask = self.sp_mlp(hidden_states)
522
+
523
+ hidden_states = self.input_layernorm(hidden_states)
524
+
525
+ # Self Attention
526
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
527
+ hidden_states=hidden_states,
528
+ attention_mask=attention_mask,
529
+ position_ids=position_ids,
530
+ past_key_value=past_key_value,
531
+ output_attentions=output_attentions,
532
+ use_cache=use_cache,
533
+ )
534
+ hidden_states = residual + hidden_states
535
+
536
+ # Fully Connected
537
+ residual = hidden_states
538
+ hidden_states = self.post_attention_layernorm(hidden_states)
539
+
540
+ if not self.use_async:
541
+ sp_mask = self.sp_mlp(hidden_states)
542
+
543
+ # Compute distillation loss
544
+ gating_output = self.mlp.sparse_act_fn(self.mlp.gate_proj(hidden_states))
545
+ loss_func = MSELoss()
546
+ self.distill_loss = loss_func(sp_mask, gating_output)
547
+
548
+ # Convert sp mask into binary form
549
+ sp_mask = sp_mask > 0
550
+
551
+ if self.training:
552
+ sp_mask = None
553
+ # if not self.use_sparse_predictor:
554
+ # sp_mask = None
555
+
556
+ hidden_states = self.mlp(hidden_states, sp_mask)
557
+ hidden_states = residual + hidden_states
558
+
559
+ outputs = (hidden_states,)
560
+
561
+ if output_attentions:
562
+ outputs += (self_attn_weights,)
563
+
564
+ if use_cache:
565
+ outputs += (present_key_value,)
566
+
567
+ return outputs
568
+
569
+
570
+ class SparseMistralConfig(MistralConfig):
571
+ model_type = "sparse_mistral"
572
+
573
+ def __init__(self, **kwargs):
574
+ super().__init__(**kwargs)
575
+
576
+
577
+ class SparseMistralforCausalLM(MistralForCausalLM):
578
+ config_class = SparseMistralConfig
579
+
580
+ def __init__(self, config):
581
+ super().__init__(config)
582
+ self.config = config
583
+ if config.use_sparse_model:
584
+ self.apply_sparse_mlp()
585
+ if config.thresholds is not None:
586
+ for idx, m in enumerate(self.model.layers):
587
+ if isinstance(m.mlp, MistralSparseSiluMLP):
588
+ m.mlp.dead_threshold = config.thresholds[idx]
589
+ m.mlp.sparse_act_fn.set_new_threshold(m.mlp.dead_threshold)
590
+ m.mlp.kill_sparse_swish_outputs = True
591
+ m.mlp.use_relu = config.use_relu
592
+ if config.use_sparse_predictor:
593
+ self.apply_sparse_predictor(init_svd=config.init_svd)
594
+
595
+ def apply_sparse_mlp(self):
596
+ apply_sparse_silu_mlp(
597
+ self,
598
+ config=self.config,
599
+ use_sparse_regularization=self.config.use_sparse_regularization,
600
+ )
601
+
602
+ def apply_sparse_predictor(self, init_svd: bool = True):
603
+ apply_sparse_decoder_layer(self, config=self.config, init_svd=init_svd)
604
+
605
+
606
+ # LLAMA
607
+
608
+
609
+ class SparseLlamaConfig(LlamaConfig):
610
+ model_type = "sparse_llama"
611
+
612
+ def __init__(self, **kwargs):
613
+ super().__init__(**kwargs)
614
+
615
+
616
+ class SparseLlamaForCausalLM(LlamaForCausalLM):
617
+ config_class = SparseLlamaConfig
618
+
619
+ def __init__(self, config):
620
+ super().__init__(config)
621
+ self.config = config
622
+ if config.use_sparse_model:
623
+ self.apply_sparse_mlp()
624
+ if config.thresholds is not None:
625
+ for idx, m in enumerate(self.model.layers):
626
+ if isinstance(m.mlp, LlamaSparseSiluMLP):
627
+ m.mlp.dead_threshold = config.thresholds[idx]
628
+ m.mlp.sparse_act_fn.set_new_threshold(m.mlp.dead_threshold)
629
+ m.mlp.kill_sparse_swish_outputs = True
630
+ m.mlp.use_relu = config.use_relu
631
+ if config.use_sparse_predictor:
632
+ self.apply_sparse_predictor(init_svd=config.init_svd)
633
+
634
+ def apply_sparse_mlp(self):
635
+ apply_sparse_silu_mlp(
636
+ self,
637
+ config=self.config,
638
+ use_sparse_regularization=self.config.use_sparse_regularization,
639
+ )
640
+
641
+ def apply_sparse_predictor(self, init_svd: bool = True):
642
+ apply_sparse_decoder_layer(self, config=self.config, init_svd=init_svd)
643
+
644
+
645
+ class LlamaSparseSiluMLP(LlamaMLP):
646
+ def __init__(self, config, *args, **kwargs):
647
+ super().__init__(config)
648
+ self.swish_outputs = None
649
+ self.relu = nn.ReLU()
650
+
651
+ self.kill_sparse_swish_outputs = False
652
+ self.dead_percentage = 0
653
+ self.is_stats = False
654
+ self.visit_counts = 0
655
+
656
+ # Hyperparameters to tune
657
+ self.dead_threshold = kwargs.pop("dead_threshold", 0)
658
+ self.use_sparse_regularization = kwargs.pop("use_sparse_regularization", True)
659
+ self.regularization_type = kwargs.pop("regularization_type", "L1 regularization")
660
+ self.regularization_threshold = kwargs.pop("regularization_threshold", 0.5)
661
+ self.use_relu = kwargs.pop("use_relu", False)
662
+ self.activation_norm = None
663
+
664
+ # Activation Histograms
665
+ self.is_collect_histogram = False
666
+ num_bins = 1000
667
+ self.histogram_bins = torch.linspace(-1, 1, num_bins - 2)
668
+ self.histogram_bins = torch.cat([torch.tensor([-torch.inf]), self.histogram_bins, torch.tensor([torch.inf])])
669
+ self.pre_act_hist_counts = torch.zeros(num_bins - 1)
670
+ self.post_act_hist_counts = torch.zeros(num_bins - 1)
671
+ self.t = 0
672
+ self.count = 0
673
+ self.agg_sparsity = 0
674
+
675
+ # Sparse activation function
676
+ self.sparse_act_fn = SparseSiLU(threshold=self.dead_threshold)
677
+
678
+ def activate_stats(self, is_collect_histogram: bool = True):
679
+ self.is_stats = True
680
+ self.dead_percentage = 0
681
+ self.visit_counts = 0
682
+ self.is_collect_histogram = is_collect_histogram
683
+ self.histogram_counts = torch.zeros(2000) # .to(self.down_proj.weight.device)
684
+
685
+ def deactivate_stats(self):
686
+ self.is_stats = False
687
+
688
+ def collect_stats(self, pre_activation, post_activation):
689
+ start_time = time.time()
690
+ pre_activation = pre_activation.float().cpu().detach()
691
+ post_activation = post_activation.float().cpu().detach()
692
+ # self.histogram_bins=self.histogram_bins.to(pre_activation.device).type(pre_activation.dtype)
693
+ self.pre_act_hist_counts += torch.histogram(pre_activation, bins=self.histogram_bins)[0]
694
+ self.post_act_hist_counts += torch.histogram(torch.abs(post_activation), bins=self.histogram_bins)[0]
695
+ self.t += time.time() - start_time
696
+ # if self.visit_counts % 30 == 0:
697
+ # print(f"Time taken to collect stats: {self.t}s.")
698
+
699
+ def forward(
700
+ self,
701
+ x,
702
+ sp_mask: torch.tensor = None,
703
+ ):
704
+ """
705
+ If kill_sparse_swish_outputs is set to False, this layer functions exactly like a normal MLP layer.
706
+ """
707
+ if sp_mask != None: # When sparse mask is given
708
+ return self.down_proj(
709
+ self.sparse_act_fn(self.gate_proj(x) * sp_mask) * self.up_proj(x)
710
+ ) # Todo: This doesn't accelerate runtime (instead slowing down)
711
+
712
+ elif self.use_relu:
713
+ post_act = self.relu(self.gate_proj(x))
714
+ self.count += 1
715
+ if self.count <= 1:
716
+ print("USING RELU!!!!")
717
+
718
+ if self.is_stats:
719
+ dead_neurons = post_act == 0
720
+ dead_percentage = dead_neurons.float().mean()
721
+ agg_sparsity = dead_neurons.all(dim=0).float().mean()
722
+
723
+ self.dead_percentage = (self.dead_percentage * self.visit_counts + dead_percentage) / (self.visit_counts + 1)
724
+ self.agg_sparsity = (self.agg_sparsity * self.visit_counts + agg_sparsity) / (self.visit_counts + 1)
725
+ self.visit_counts += 1
726
+
727
+ return self.down_proj(post_act * self.up_proj(x))
728
+
729
+ else:
730
+ self.count += 1
731
+ if self.count <= 1:
732
+ ds_print("USING SparseSILU!!!!")
733
+ pre_act = self.gate_proj(x)
734
+ post_act = self.act_fn(pre_act)
735
+ if self.kill_sparse_swish_outputs:
736
+ dead_neurons = post_act.abs() <= self.dead_threshold
737
+ # print("pre act sparsity: ", (pre_act==0).float().mean())
738
+
739
+ dead_percentage = dead_neurons.float().mean()
740
+ agg_sparsity = dead_neurons.all(dim=0).float().mean()
741
+
742
+ if self.is_stats:
743
+ self.dead_percentage = (self.dead_percentage * self.visit_counts + dead_percentage) / (self.visit_counts + 1)
744
+ self.agg_sparsity = (self.agg_sparsity * self.visit_counts + agg_sparsity) / (self.visit_counts + 1)
745
+ self.visit_counts += 1
746
+
747
+ self.a = dead_percentage
748
+
749
+ # Collect histogram stats
750
+ if self.is_collect_histogram and pre_act.eq(0).float().mean() < 0.99: # Padded dataset
751
+ self.collect_stats(pre_act, post_act)
752
+
753
+ if self.count <= 1:
754
+ ds_print("KILL!")
755
+ post_act[dead_neurons] = 0
756
+
757
+ out = self.down_proj(post_act * self.up_proj(x))
758
+ if self.use_sparse_regularization:
759
+ if self.regularization_type == "L1 regularization":
760
+ self.activation_norm = torch.abs(post_act)[torch.abs(post_act) < self.regularization_threshold].mean()
761
+ elif self.regularization_type == "L2 regularization":
762
+ self.activation_norm = torch.sqrt(torch.square(post_act)[torch.abs(post_act) < self.regularization_threshold]).mean()
763
+
764
+ return out
765
+
766
+
767
+ class LlamaSparseDecoderLayer(LlamaDecoderLayer):
768
+ def __init__(
769
+ self,
770
+ config: LlamaConfig,
771
+ layer_idx: int,
772
+ decoder_layer: LlamaDecoderLayer,
773
+ init_svd: bool = True,
774
+ *args,
775
+ **kwargs,
776
+ ):
777
+ assert isinstance(decoder_layer.mlp, LlamaSparseSiluMLP), f"{type(decoder_layer.mlp)} should be LlamaSparseSiluMLP."
778
+
779
+ super().__init__(config, layer_idx)
780
+ self.hidden_size = config.hidden_size
781
+ self.intermediate_size = config.intermediate_size
782
+
783
+ self.init_svd = init_svd
784
+ self.self_attn = decoder_layer.self_attn
785
+
786
+ self.mlp = decoder_layer.mlp
787
+ self.input_layernorm = decoder_layer.input_layernorm
788
+ self.post_attention_layernorm = decoder_layer.post_attention_layernorm
789
+
790
+ # Sparse predictor for mlp (initialized with SVD decomposed matrix)
791
+ self.low_rank = kwargs.pop("low_rank", 64)
792
+ self.sparse_act_func = decoder_layer.mlp.sparse_act_fn
793
+
794
+ print(f"Setting {layer_idx}th mlp layer's sparse predictor... svd init: {init_svd}")
795
+ self.sp_mlp = low_rank_approximation(
796
+ decoder_layer.mlp.gate_proj,
797
+ act_func=self.sparse_act_func,
798
+ init_svd=init_svd,
799
+ )
800
+ self.use_async = kwargs.pop("use_async", False)
801
+ self.use_sparse_predictor = False
802
+ self.distill_loss = None
803
+
804
+ def forward(
805
+ self,
806
+ hidden_states: torch.Tensor,
807
+ attention_mask: Optional[torch.Tensor] = None,
808
+ position_ids: Optional[torch.LongTensor] = None,
809
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
810
+ output_attentions: Optional[bool] = False,
811
+ use_cache: Optional[bool] = False,
812
+ **kwargs,
813
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
814
+ print("hidden_states shape: ", hidden_states.shape)
815
+ if "padding_mask" in kwargs:
816
+ warnings.warn(
817
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
818
+ )
819
+
820
+ residual = hidden_states
821
+ sp_mask = None
822
+
823
+ if self.use_async:
824
+ sp_mask = self.sp_mlp(hidden_states)
825
+
826
+ hidden_states = self.input_layernorm(hidden_states)
827
+
828
+ # Self Attention
829
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
830
+ hidden_states=hidden_states,
831
+ attention_mask=attention_mask,
832
+ position_ids=position_ids,
833
+ past_key_value=past_key_value,
834
+ output_attentions=output_attentions,
835
+ use_cache=use_cache,
836
+ **kwargs,
837
+ )
838
+ hidden_states = residual + hidden_states
839
+
840
+ # Fully Connected
841
+ residual = hidden_states
842
+ hidden_states = self.post_attention_layernorm(hidden_states)
843
+
844
+ if not self.use_async:
845
+ sp_mask = self.sp_mlp(hidden_states)
846
+
847
+ # Compute distillation loss
848
+ gating_output = self.mlp.sparse_act_fn(self.mlp.gate_proj(hidden_states))
849
+ loss_func = MSELoss()
850
+ self.distill_loss = loss_func(sp_mask, gating_output)
851
+
852
+ # Convert sp mask into binary form
853
+ sp_mask = sp_mask > 0
854
+
855
+ if self.training:
856
+ sp_mask = None
857
+ # if not self.use_sparse_predictor:
858
+ # sp_mask = None
859
+
860
+ hidden_states = self.mlp(hidden_states, sp_mask)
861
+ hidden_states = residual + hidden_states
862
+
863
+ outputs = (hidden_states,)
864
+
865
+ if output_attentions:
866
+ outputs += (self_attn_weights,)
867
+
868
+ if use_cache:
869
+ outputs += (present_key_value,)
870
+
871
+ return outputs
872
+
873
+
874
+ # Callbacks
875
+
876
+
877
+ class GracefulRegularizationScheduler(TrainerCallback):
878
+ def __init__(
879
+ self,
880
+ num_warmup_steps=40,
881
+ is_enabled: bool = False,
882
+ model_name: str = "mistral",
883
+ test_dataset: Dataset = None,
884
+ targeted_sparsity: float = 0.5,
885
+ keep_regularization_with_kill: bool = False,
886
+ ):
887
+ """Scheduler for regularizing the model first before applying the dead threshold.
888
+
889
+ :param num_warmup_steps: number of training steps required to reach the dead threshold, defaults to 40
890
+ :param increment_ratio: by how much to increase the dead threshold.
891
+ For example, 0.5 means "increase the threshold by 0.5 * desired threshold
892
+ """
893
+ self.num_warmup_steps = num_warmup_steps
894
+ self.is_enabled = is_enabled
895
+ self.model_name = model_name
896
+ self.test_dataset = test_dataset
897
+ self.targeted_sparsity = targeted_sparsity
898
+ self.keep_regularization_with_kill = keep_regularization_with_kill
899
+ self.act_hist_path = f"/scr/lukeai/histograms/warm_up_reg_{targeted_sparsity}/act_hist.pt"
900
+ if self.is_enabled:
901
+ print("GracefulRegularizationScheduler is enabled.")
902
+ self.trainer = None
903
+
904
+ def set_trainer(self, trainer):
905
+ self.trainer = trainer
906
+
907
+ def on_step_end(self, args, state, control, **kwargs):
908
+ if not self.is_enabled:
909
+ return
910
+
911
+ model = kwargs["model"]
912
+ if isinstance(model, PeftModel):
913
+ base_model = model.get_base_model()
914
+ else:
915
+ base_model = model
916
+
917
+ if state.global_step == 1:
918
+ ds_print("Setting an initial reg threshold to 0.1")
919
+ set_regularization_threshold(base_model, 0.1)
920
+ disable_sparse_silu(base_model)
921
+
922
+ if state.global_step == self.num_warmup_steps:
923
+ activate_stats(base_model)
924
+ enable_sparse_silu(base_model)
925
+ self.trainer.evaluate()
926
+ save_act_hist(base_model, self.act_hist_path)
927
+ set_sparse_threshold(base_model, self.targeted_sparsity, False)
928
+ deactivate_stats(base_model)
929
+ self.trainer.use_sparse_regularization = self.keep_regularization_with_kill
930
+ print_dead_neuron_stats(model.get_base_model())
931
+
932
+
933
+ class GradualSparsificationScheduler(TrainerCallback):
934
+ def __init__(
935
+ self,
936
+ num_warmup_steps=40,
937
+ increment_ratio=0.5,
938
+ is_enabled: bool = False,
939
+ model_name: str = "mistral",
940
+ ):
941
+ """Scheduler for gradually increasing a dead threshold until it reaches the desired threshold.
942
+
943
+ :param num_warmup_steps: number of training steps required to reach the dead threshold, defaults to 40
944
+ :param increment_ratio: by how much to increase the dead threshold.
945
+ For example, 0.5 means "increase the threshold by 0.5 * desired threshold
946
+ """
947
+ self.num_warmup_steps = num_warmup_steps
948
+ self.increment_ratio = increment_ratio
949
+ self.step_size = int(num_warmup_steps * increment_ratio)
950
+ self.is_enabled = is_enabled
951
+ self.model_name = model_name
952
+ self.model_type = get_model_type(model_name)
953
+ self.mlp_type = MistralSparseSiluMLP if self.model_type == MISTRAL else LlamaSparseSiluMLP
954
+
955
+ def on_step_end(self, args, state, control, **kwargs):
956
+ model = kwargs["model"]
957
+
958
+ if not self.is_enabled:
959
+ if state.global_step <= 10:
960
+ for module in model.modules():
961
+ if isinstance(module, self.mlp_type):
962
+ module.current_dead_threshold = module.dead_threshold
963
+ return
964
+
965
+ current_dead_threshold = 0
966
+ desired_dead_threshold = 0
967
+
968
+ if is_mainprocess():
969
+ ds_print(state.global_step)
970
+
971
+ if state.global_step % self.step_size == 2:
972
+ for module in model.modules():
973
+ if isinstance(module, self.mlp_type):
974
+ desired_dead_threshold = copy.deepcopy(module.dead_threshold)
975
+ current_dead_threshold = module.current_dead_threshold
976
+ current_dead_threshold += self.increment_ratio * desired_dead_threshold
977
+ module.current_dead_threshold = min(desired_dead_threshold, current_dead_threshold)
978
+
979
+ if is_running_deepspeed and is_mainprocess():
980
+ ds_print(
981
+ state.global_step,
982
+ current_dead_threshold,
983
+ desired_dead_threshold,
984
+ )
985
+
986
+ if state.global_step % 2000 == 0:
987
+ if is_running_deepspeed and is_mainprocess():
988
+ ds_print(
989
+ f"Saving to /matx/u/lukeai/{self.model_name}_{state.global_step - 2}.pt",
990
+ )
991
+ torch.save(
992
+ model.state_dict(),
993
+ f"/matx/u/lukeai/{self.model_name}_{state.global_step - 2}.pt",
994
+ )
995
+
996
+
997
+ # Trainer
998
+
999
+
1000
+ class SparseTrainer(Trainer):
1001
+ def __init__(self, *args, **kwargs):
1002
+ self.regularization_coefficient = kwargs.pop("regularization_coefficient", 10)
1003
+ self.use_sparse_regularization = kwargs.pop("use_sparse_regularization", False)
1004
+ self.use_spm_loss = False
1005
+ self.freeze_original_weights = False
1006
+ self.regularization_type = kwargs.pop("regularization_type", "L1 positive activation")
1007
+ assert self.regularization_type in [
1008
+ "L2 activation",
1009
+ "L1 positive activation",
1010
+ ], f"Invalid regularization type: {self.regularization_type}"
1011
+ self.sparse_layers = []
1012
+ self.sparse_decoder_layers = []
1013
+ super(SparseTrainer, self).__init__(*args, **kwargs)
1014
+
1015
+ def initialize_sparse_silu_layers(self, model):
1016
+ SparseMLP = get_mlp_class(model)
1017
+ self.sparse_layers = [m for m in model.modules() if isinstance(m, SparseMLP)]
1018
+
1019
+ def initialize_sparse_decoder_layers(self, model):
1020
+ SparseDecoder = get_decoder_class(model)
1021
+ self.sparse_decoder_layers = [m for m in model.modules() if isinstance(m, SparseDecoder)]
1022
+
1023
+ def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor:
1024
+ """
1025
+ Override the huggingface's training_step function to add a regularization term.
1026
+ A regularization term is computed with intermediate values, which are freed after "backward()."
1027
+ You need to set `retain_graph=True` inside `backward` function to keep the values.
1028
+ """
1029
+ model.train()
1030
+ inputs = self._prepare_inputs(inputs)
1031
+
1032
+ with self.compute_loss_context_manager():
1033
+ loss = self.compute_loss(model, inputs)
1034
+
1035
+ if self.args.n_gpu > 1:
1036
+ loss = loss.mean() # mean() to average on multi-gpu parallel training
1037
+
1038
+ if not self.freeze_original_weights:
1039
+ if loss is not None:
1040
+ self.accelerator.backward(loss, retain_graph=True)
1041
+
1042
+ if self.use_sparse_regularization:
1043
+ regularization_loss = self.compute_regularization(model)
1044
+ if self.args.n_gpu > 1:
1045
+ regularization_loss = regularization_loss.mean()
1046
+ if regularization_loss is not None:
1047
+ self.accelerator.backward(regularization_loss, retain_graph=True)
1048
+ loss += regularization_loss
1049
+
1050
+ if self.use_spm_loss:
1051
+ spm_loss = self.compute_spm_loss(model)
1052
+ if self.args.n_gpu > 1:
1053
+ spm_loss = spm_loss.mean()
1054
+ if spm_loss is not None:
1055
+ self.accelerator.backward(spm_loss, retain_graph=False)
1056
+ loss += spm_loss
1057
+
1058
+ return loss.detach() / self.args.gradient_accumulation_steps
1059
+
1060
+ def compute_regularization(self, model):
1061
+ """
1062
+ Compute a sparse regularization loss for SiLU
1063
+ """
1064
+ loss = 0
1065
+ if len(self.sparse_layers) == 0:
1066
+ self.initialize_sparse_silu_layers(model)
1067
+ num_layers = len(self.sparse_layers)
1068
+
1069
+ for module in self.sparse_layers:
1070
+ if module.activation_norm is not None:
1071
+ loss += module.activation_norm
1072
+
1073
+ loss /= num_layers
1074
+ loss *= self.regularization_coefficient
1075
+
1076
+ if self.state.global_step % 20 == 0 and loss != 0:
1077
+ print("Negative relularizer loss: ", loss.item())
1078
+ return loss
1079
+
1080
+ def compute_spm_loss(self, model):
1081
+ loss = 0
1082
+ if len(self.sparse_decoder_layers) == 0:
1083
+ self.initialize_sparse_decoder_layers(model)
1084
+ for module in self.sparse_decoder_layers:
1085
+ if module.distill_loss != None:
1086
+ loss += module.distill_loss
1087
+ if self.state.global_step % 20 == 0 and loss != 0:
1088
+ print("Sparse Predictor Distillation loss: ", loss.item())
1089
+ return loss