|
import copy |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import CrossEntropyLoss |
|
from torch.nn import functional as F |
|
from typing import Optional, Tuple, Union |
|
|
|
from transformers import T5Config, T5Tokenizer, T5ForConditionalGeneration |
|
from transformers.models.t5.modeling_t5 import ( |
|
T5LayerNorm, |
|
T5LayerFF, |
|
T5Attention, |
|
T5LayerSelfAttention, |
|
T5LayerCrossAttention, |
|
T5Block, |
|
T5Stack, |
|
) |
|
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput |
|
|
|
class BottleneckCrossAttentionGate(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.gate = nn.Linear(2 * config.d_model, config.d_model, bias=False) |
|
self.act = nn.Sigmoid() |
|
|
|
def forward(self, query_states, latents): |
|
latents = latents.unsqueeze(1).expand(query_states.shape) |
|
query_latents = torch.cat([query_states, latents], dim=-1) |
|
return 2 * self.act(self.gate(query_latents)) |
|
|
|
class BottleneckT5Attention(T5Attention): |
|
def __init__(self, config: T5Config, has_relative_attention_bias=False): |
|
super(T5Attention, self).__init__() |
|
self.is_decoder = config.is_decoder |
|
self.has_relative_attention_bias = has_relative_attention_bias |
|
self.relative_attention_num_buckets = config.relative_attention_num_buckets |
|
self.relative_attention_max_distance = config.relative_attention_max_distance |
|
self.d_model = config.d_model |
|
self.key_value_proj_dim = config.d_kv |
|
self.n_heads = config.num_heads |
|
self.dropout = config.dropout_rate |
|
self.inner_dim = self.n_heads * self.key_value_proj_dim |
|
|
|
|
|
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) |
|
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) |
|
|
|
if self.has_relative_attention_bias: |
|
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) |
|
self.pruned_heads = set() |
|
self.gradient_checkpointing = False |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads |
|
) |
|
|
|
self.v = prune_linear_layer(self.v, index) |
|
self.o = prune_linear_layer(self.o, index, dim=1) |
|
|
|
self.n_heads = self.n_heads - len(heads) |
|
self.inner_dim = self.key_value_proj_dim * self.n_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
mask=None, |
|
key_value_states=None, |
|
position_bias=None, |
|
past_key_value=None, |
|
layer_head_mask=None, |
|
query_length=None, |
|
use_cache=False, |
|
output_attentions=False, |
|
): |
|
""" |
|
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). |
|
""" |
|
|
|
|
|
|
|
batch_size, seq_length = hidden_states.shape[:2] |
|
|
|
real_seq_length = seq_length |
|
|
|
if past_key_value is not None: |
|
assert ( |
|
len(past_key_value) == 2 |
|
), f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" |
|
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length |
|
|
|
key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] |
|
|
|
def shape(states): |
|
"""projection""" |
|
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) |
|
|
|
def unshape(states): |
|
"""reshape""" |
|
return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) |
|
|
|
def project(hidden_states, proj_layer, key_value_states, past_key_value): |
|
"""projects hidden states correctly to key/query states""" |
|
if key_value_states is None: |
|
|
|
|
|
hidden_states = shape(proj_layer(hidden_states)) |
|
elif past_key_value is None: |
|
|
|
|
|
hidden_states = shape(proj_layer(key_value_states)) |
|
|
|
if past_key_value is not None: |
|
if key_value_states is None: |
|
|
|
|
|
hidden_states = torch.cat([past_key_value, hidden_states], dim=2) |
|
else: |
|
|
|
hidden_states = past_key_value |
|
return hidden_states |
|
|
|
|
|
key_states = torch.zeros((batch_size, self.n_heads, seq_length, key_length), device=hidden_states.device) |
|
value_states = project( |
|
hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None |
|
) |
|
|
|
|
|
scores = torch.ones((batch_size, self.n_heads, seq_length, key_length), device=hidden_states.device) |
|
|
|
if position_bias is None: |
|
if not self.has_relative_attention_bias: |
|
position_bias = torch.zeros( |
|
(1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype |
|
) |
|
if self.gradient_checkpointing and self.training: |
|
position_bias.requires_grad = True |
|
else: |
|
position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device) |
|
|
|
|
|
|
|
if past_key_value is not None: |
|
position_bias = position_bias[:, :, -hidden_states.size(1) :, :] |
|
|
|
if mask is not None: |
|
position_bias = position_bias + mask |
|
|
|
if self.pruned_heads: |
|
mask = torch.ones(position_bias.shape[1]) |
|
mask[list(self.pruned_heads)] = 0 |
|
position_bias_masked = position_bias[:, mask.bool()] |
|
else: |
|
position_bias_masked = position_bias |
|
|
|
scores += position_bias_masked |
|
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as( |
|
scores |
|
) |
|
attn_weights = nn.functional.dropout( |
|
attn_weights, p=self.dropout, training=self.training |
|
) |
|
|
|
|
|
if layer_head_mask is not None: |
|
attn_weights = attn_weights * layer_head_mask |
|
|
|
attn_output = unshape(torch.matmul(attn_weights, value_states)) |
|
attn_output = self.o(attn_output) |
|
|
|
present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None |
|
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) |
|
|
|
if output_attentions: |
|
outputs = outputs + (attn_weights,) |
|
return outputs |
|
|
|
class BottleneckT5LayerCrossAttention(T5LayerCrossAttention): |
|
def __init__(self, config): |
|
super(T5LayerCrossAttention, self).__init__() |
|
self.EncDecAttention = BottleneckT5Attention(config, has_relative_attention_bias=False) |
|
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) |
|
self.gate = BottleneckCrossAttentionGate(config) |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
key_value_states, |
|
attention_mask=None, |
|
position_bias=None, |
|
layer_head_mask=None, |
|
past_key_value=None, |
|
use_cache=False, |
|
query_length=None, |
|
output_attentions=False, |
|
): |
|
normed_hidden_states = self.layer_norm(hidden_states) |
|
attention_output = self.EncDecAttention( |
|
normed_hidden_states, |
|
mask=attention_mask, |
|
key_value_states=key_value_states, |
|
position_bias=position_bias, |
|
layer_head_mask=layer_head_mask, |
|
past_key_value=past_key_value, |
|
use_cache=use_cache, |
|
query_length=query_length, |
|
output_attentions=output_attentions, |
|
) |
|
latents = key_value_states[:, 0] |
|
layer_output = hidden_states + self.dropout(self.gate(normed_hidden_states, latents) * attention_output[0]) |
|
outputs = (layer_output,) + attention_output[1:] |
|
return outputs |
|
|
|
class BottleneckT5Block(T5Block): |
|
def __init__(self, config, has_relative_attention_bias=False): |
|
super(T5Block, self).__init__() |
|
self.is_decoder = config.is_decoder |
|
self.layer = nn.ModuleList() |
|
self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias)) |
|
if self.is_decoder: |
|
self.layer.append(BottleneckT5LayerCrossAttention(config)) |
|
|
|
self.layer.append(T5LayerFF(config)) |
|
|
|
class BottleneckT5Stack(T5Stack): |
|
def __init__(self, config, embed_tokens=None): |
|
super(T5Stack, self).__init__(config) |
|
|
|
self.embed_tokens = embed_tokens |
|
self.is_decoder = config.is_decoder |
|
|
|
self.block = nn.ModuleList( |
|
[BottleneckT5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)] |
|
) |
|
self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
|
|
self.post_init() |
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
self.gradient_checkpointing = False |
|
|
|
class BottleneckT5LMWithPerturb(T5ForConditionalGeneration): |
|
def __init__(self, config: T5Config): |
|
super(T5ForConditionalGeneration, self).__init__(config) |
|
self.model_dim = config.d_model |
|
|
|
self.shared = nn.Embedding(config.vocab_size, config.d_model) |
|
encoder_config = copy.deepcopy(config) |
|
encoder_config.is_decoder = False |
|
encoder_config.use_cache = False |
|
encoder_config.is_encoder_decoder = False |
|
self.encoder = T5Stack(encoder_config, self.shared) |
|
|
|
|
|
self.num_heads = 8 |
|
self.bottleneck = nn.MultiheadAttention(config.d_model, |
|
num_heads=self.num_heads, |
|
dropout=config.dropout_rate, |
|
bias=False, |
|
batch_first=True) |
|
self.bottleneck_scale = nn.Parameter(torch.ones(1)) |
|
|
|
self.dec_emb = nn.Embedding(config.vocab_size, config.d_model) |
|
decoder_config = copy.deepcopy(config) |
|
decoder_config.is_decoder = True |
|
decoder_config.is_encoder_decoder = False |
|
decoder_config.num_layers = config.num_decoder_layers |
|
self.decoder = BottleneckT5Stack(decoder_config, self.dec_emb) |
|
|
|
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
decoder_attention_mask: Optional[torch.BoolTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
decoder_head_mask: Optional[torch.FloatTensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
perturb_vector: Optional[torch.FloatTensor] = None, |
|
encode_only: Optional[bool] = None, |
|
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if head_mask is not None and decoder_head_mask is None: |
|
if self.config.num_layers == self.config.num_decoder_layers: |
|
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) |
|
decoder_head_mask = head_mask |
|
|
|
|
|
if encoder_outputs is None: |
|
|
|
encoder_outputs = self.encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): |
|
encoder_outputs = BaseModelOutput( |
|
last_hidden_state=encoder_outputs[0], |
|
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, |
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, |
|
) |
|
|
|
hidden_states = encoder_outputs[0] |
|
|
|
|
|
hidden_states = hidden_states.repeat( |
|
attention_mask.shape[0] // hidden_states.shape[0], |
|
1, 1) |
|
mask_expanded = attention_mask.float().unsqueeze(-1).expand(hidden_states.shape) |
|
mean_pooled_embedding = torch.sum(hidden_states * mask_expanded, 1) / torch.clamp(mask_expanded.sum(1), min=1e-9) |
|
unscaled_latent, attn_weights = self.bottleneck(mean_pooled_embedding.unsqueeze(1), hidden_states, hidden_states, |
|
need_weights=False, |
|
|
|
attn_mask=attention_mask.float().unsqueeze(1).repeat_interleave(self.num_heads, dim=0)) |
|
latent = self.bottleneck_scale * F.normalize(unscaled_latent, p=2, dim=2) |
|
if encode_only: |
|
return latent.squeeze(1) |
|
hidden_states = latent.expand(hidden_states.shape) |
|
|
|
if hasattr(self, 'perturb_vector'): |
|
hidden_states = self.bottleneck_scale * F.normalize(hidden_states + self.perturb_vector, p=2, dim=2) |
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.decoder.first_device) |
|
|
|
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: |
|
|
|
decoder_input_ids = self._shift_right(labels) |
|
|
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.decoder.first_device) |
|
hidden_states = hidden_states.to(self.decoder.first_device) |
|
if decoder_input_ids is not None: |
|
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) |
|
if attention_mask is not None: |
|
attention_mask = attention_mask.to(self.decoder.first_device) |
|
if decoder_attention_mask is not None: |
|
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) |
|
|
|
|
|
decoder_outputs = self.decoder( |
|
input_ids=decoder_input_ids, |
|
attention_mask=decoder_attention_mask, |
|
inputs_embeds=decoder_inputs_embeds, |
|
past_key_values=past_key_values, |
|
encoder_hidden_states=hidden_states, |
|
encoder_attention_mask=attention_mask, |
|
head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = decoder_outputs[0] |
|
|
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.encoder.first_device) |
|
self.lm_head = self.lm_head.to(self.encoder.first_device) |
|
sequence_output = sequence_output.to(self.lm_head.weight.device) |
|
|
|
if self.config.tie_word_embeddings: |
|
|
|
|
|
sequence_output = sequence_output * (self.model_dim**-0.5) |
|
|
|
lm_logits = self.lm_head(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss(ignore_index=-100) |
|
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) |
|
|
|
|
|
if not return_dict: |
|
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return Seq2SeqLMOutput( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=decoder_outputs.past_key_values, |
|
decoder_hidden_states=decoder_outputs.hidden_states, |
|
decoder_attentions=decoder_outputs.attentions, |
|
cross_attentions=decoder_outputs.cross_attentions, |
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state, |
|
encoder_hidden_states=encoder_outputs.hidden_states, |
|
encoder_attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|