IMU-1 Base

This repository contains the IMU-1 Base model, a sample-efficient 430M parameter language model introduced in the paper IMU-1: Sample-Efficient Pre-training of Small Language Models.

IMU-1 is trained on 72B tokens and approaches the benchmark performance of models trained on 56× more data.

Model Details

Parameter Value
Parameters 430M
Hidden dim 1,152
Layers 30
Attention heads 18
KV heads (GQA) 6
Vocab size 49,152
Max context 1,152
Training tokens 72B

Architecture

IMU-1 uses a validated recipe combining recent advances:

  • QK-norm attention with learnable scale
  • Per-head gating (sigmoid-based)
  • Value residual learning
  • LayerNorm scaling (depth-dependent)
  • GQA (grouped query attention)
  • SwiGLU activation
  • RoPE positional encoding

Training

  • Optimizer: NorMuon with cautious weight decay, muP parametrization
  • Schedule: Three-stage WSD (Warmup-Stable-Decay)
  • Post-processing: Checkpoint EMA (β=0.8)

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained(
    "thepowerfuldeez/imu1_base",
    trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained("thepowerfuldeez/imu1_base")

text = "The quick brown fox"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(outputs[0]))

Note: This model uses custom modeling code. You must pass trust_remote_code=True when loading.

Benchmark Results

Benchmark Score
HellaSwag (0-shot) 51.1
ARC-Easy 71.4
ARC-Challenge 41.1
PIQA 70.2
Lambada (OpenAI) 51.3
Winograd 74.7
WinoGrande 55.2
BoolQ 59.5
CORE (centered) 30.2

Training Stages

Stage Iterations Tokens Data
1. Stable 100k 29B DCLM-edu, FineWeb-edu
2. Decay 100k 28B Higher quality filters
3. Midtrain 65k 14B Instruction, reasoning, code

Resources

Citation

@misc{grigorev2026imu1sampleefficientpretrainingsmall,
      title={IMU-1: Sample-Efficient Pre-training of Small Language Models}, 
      author={George Grigorev},
      year={2026},
      eprint={2602.02522},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2602.02522}, 
}

License

Apache 2.0

Downloads last month
108
Safetensors
Model size
0.5B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Paper for thepowerfuldeez/imu1_base