|
from functools import partial |
|
import math |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from einops import rearrange, repeat |
|
|
|
|
|
from flash_attn.utils.benchmark import benchmark_forward, benchmark_backward, benchmark_combined, benchmark_all, benchmark_fwd_bwd, pytorch_profiler |
|
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func |
|
|
|
|
|
|
|
|
|
|
|
|
|
from flash_attn import flash_attn_qkvpacked_func, flash_attn_kvpacked_func |
|
|
|
try: |
|
from flash_attn.fused_softmax import scaled_upper_triang_masked_softmax |
|
except ImportError: |
|
scaled_upper_triang_masked_softmax = None |
|
|
|
|
|
def attention_pytorch(qkv, dropout_p=0.0, causal=True): |
|
""" |
|
Arguments: |
|
qkv: (batch_size, seqlen, 3, nheads, head_dim) |
|
dropout_p: float |
|
Output: |
|
output: (batch_size, seqlen, nheads, head_dim) |
|
""" |
|
batch_size, seqlen, _, nheads, d = qkv.shape |
|
q, k, v = qkv.unbind(dim=2) |
|
q = rearrange(q, 'b t h d -> (b h) t d') |
|
k = rearrange(k, 'b s h d -> (b h) d s') |
|
softmax_scale = 1.0 / math.sqrt(d) |
|
|
|
scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device) |
|
scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale), |
|
'(b h) t s -> b h t s', h=nheads) |
|
if causal: |
|
|
|
|
|
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1) |
|
|
|
scores = scores + causal_mask.to(dtype=scores.dtype) |
|
attention = torch.softmax(scores, dim=-1) |
|
attention_drop = F.dropout(attention, dropout_p) |
|
output = torch.einsum('bhts,bshd->bthd', attention_drop , v) |
|
return output.to(dtype=qkv.dtype) |
|
|
|
|
|
def attention_megatron(qkv): |
|
""" |
|
Arguments: |
|
qkv: (batch_size, seqlen, 3, nheads, head_dim) |
|
Output: |
|
output: (batch_size, seqlen, nheads, head_dim) |
|
""" |
|
batch_size, seqlen, _, nheads, d = qkv.shape |
|
q, k, v = qkv.unbind(dim=2) |
|
q = rearrange(q, 'b t h d -> (b h) t d') |
|
k = rearrange(k, 'b s h d -> (b h) d s') |
|
softmax_scale = 1.0 / math.sqrt(d) |
|
|
|
scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device) |
|
scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale), |
|
'(b h) t s -> b h t s', h=nheads) |
|
attention = scaled_upper_triang_masked_softmax(scores, None, scale=1.0) |
|
output = torch.einsum('bhts,bshd->bthd', attention, v) |
|
return output.to(dtype=qkv.dtype) |
|
|
|
|
|
torch.manual_seed(0) |
|
repeats = 30 |
|
batch_size = 8 |
|
seqlen = 2048 |
|
nheads = 12 |
|
headdim = 128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
dropout_p = 0.0 |
|
causal = True |
|
dtype = torch.float16 |
|
device = 'cuda' |
|
|
|
qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype, |
|
requires_grad=True) |
|
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, |
|
device=qkv.device) |
|
|
|
qkv_unpad = rearrange(qkv, 'b s ... -> (b s) ...').detach().requires_grad_(True) |
|
|
|
|
|
|
|
|
|
benchmark_forward(flash_attn_qkvpacked_func, qkv, dropout_p, causal=causal, repeats=repeats, desc='Fav2') |
|
pytorch_profiler(flash_attn_qkvpacked_func, qkv, dropout_p, causal=causal, backward=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flops = 4 * batch_size * seqlen ** 2 * nheads * headdim |
|
ideal_a100_time = flops / 312 / 1e9 |
|
print(f"Ideal A100 fwd time: {ideal_a100_time:.3f}ms, bwd time: {ideal_a100_time * 2.5:.3f}ms") |
|
exit(0) |
|
|
|
|
|
def time_fwd_bwd(func, *args, **kwargs): |
|
time_f, time_b = benchmark_fwd_bwd(func, *args, **kwargs) |
|
return time_f[1].mean, time_b[1].mean |
|
|
|
bs_seqlen_vals = [(32, 512), (16, 1024), (8, 2048), (4, 4096), (2, 8192), (1, 16384)] |
|
causal_vals = [False, True] |
|
headdim_vals = [64, 128] |
|
dim = 2048 |
|
dropout_p = 0.0 |
|
|
|
time_f = {} |
|
time_b = {} |
|
for causal in causal_vals: |
|
for headdim in headdim_vals: |
|
for batch_size, seqlen in bs_seqlen_vals: |
|
nheads = dim // headdim |
|
qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype, |
|
requires_grad=True) |
|
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, |
|
device=qkv.device) |
|
qkv_unpad = rearrange(qkv, 'b s ... -> (b s) ...').detach().requires_grad_(True) |
|
f, b = time_fwd_bwd( |
|
flash_attn_varlen_qkvpacked_func, qkv_unpad, cu_seqlens, seqlen, dropout_p, |
|
causal=causal, repeats=repeats, verbose=False |
|
) |
|
time_f[(causal, headdim, batch_size, seqlen), "Flash"] = f |
|
time_b[(causal, headdim, batch_size, seqlen), "Flash"] = b |
|
|
|
qkv = qkv.detach().requires_grad_(True) |
|
f, b = time_fwd_bwd( |
|
fav2_qkvpacked_func, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False |
|
) |
|
time_f[(causal, headdim, batch_size, seqlen), "Flash2"] = f |
|
time_b[(causal, headdim, batch_size, seqlen), "Flash2"] = b |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if seqlen <= 8 * 1024: |
|
qkv = qkv.detach().requires_grad_(True) |
|
f, b = time_fwd_bwd( |
|
attention_pytorch, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False |
|
) |
|
else: |
|
f, b = float('nan'), float('nan') |
|
time_f[(causal, headdim, batch_size, seqlen), "Pytorch"] = f |
|
time_b[(causal, headdim, batch_size, seqlen), "Pytorch"] = b |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import pickle |
|
with open('flash2_attn_time_h100.plk', 'wb') as fp: |
|
pickle.dump((time_f, time_b), fp, protocol=pickle.HIGHEST_PROTOCOL) |
|
|