|
|
|
|
|
import math |
|
import json |
|
import re |
|
from pathlib import Path |
|
|
|
from collections import OrderedDict |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from einops import rearrange |
|
from transformers import GPT2Config, AutoConfig, PretrainedConfig |
|
|
|
|
|
def remap_state_dict_hf_btlm(state_dict, config): |
|
|
|
def key_mapping_pos_emb(key): |
|
return re.sub(r"^transformer.wpe.", "transformer.embeddings.position_embeddings.", key) |
|
|
|
if "transformer.wpe.weight" in state_dict: |
|
state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items()) |
|
word_embeddings = state_dict.pop("transformer.wte.weight") |
|
|
|
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) |
|
vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple |
|
state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad( |
|
word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0]) |
|
) |
|
state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"] |
|
|
|
|
|
def key_mapping_ln(key): |
|
key = re.sub(r"^transformer.ln_f.(weight|bias)", r"transformer.ln_f.\1", key) |
|
key = re.sub(r"^transformer.h.(\d+).ln_(1|2).(weight|bias)", r"transformer.layers.\1.norm\2.\3", key) |
|
return key |
|
|
|
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items()) |
|
|
|
|
|
for d in range(config.num_hidden_layers): |
|
W1 = state_dict.pop(f"transformer.h.{d}.mlp.c_fc.weight") |
|
W3 = state_dict.pop(f"transformer.h.{d}.mlp.c_fc2.weight") |
|
state_dict[f"transformer.layers.{d}.mlp.fc1.weight"] = torch.cat([W1.t(), W3.t()], dim=0) |
|
b1 = state_dict.pop(f"transformer.h.{d}.mlp.c_fc.bias") |
|
b3 = state_dict.pop(f"transformer.h.{d}.mlp.c_fc2.bias") |
|
state_dict[f"transformer.layers.{d}.mlp.fc1.bias"] = torch.cat([b1, b3], dim=0) |
|
W2 = state_dict.pop(f"transformer.h.{d}.mlp.c_proj.weight") |
|
state_dict[f"transformer.layers.{d}.mlp.fc2.weight"] = W2.t() |
|
|
|
def key_mapping_mlp(key): |
|
key = re.sub(r"^transformer.h.(\d+).mlp.c_proj.bias", r"transformer.layers.\1.mlp.fc2.bias", key) |
|
return key |
|
|
|
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items()) |
|
|
|
|
|
for d in range(config.num_hidden_layers): |
|
Wqkv = state_dict.pop(f"transformer.h.{d}.attn.c_attn.weight") |
|
state_dict[f"transformer.layers.{d}.mixer.Wqkv.weight"] = Wqkv.t() |
|
Wout = state_dict.pop(f"transformer.h.{d}.attn.c_proj.weight") |
|
state_dict[f"transformer.layers.{d}.mixer.out_proj.weight"] = Wout.t() |
|
state_dict.pop(f"transformer.relative_pe.slopes") |
|
|
|
def key_mapping_attn(key): |
|
key = re.sub(r"^transformer.h.(\d+).attn.c_attn.bias", r"transformer.layers.\1.mixer.Wqkv.bias", key) |
|
key = re.sub( |
|
r"^transformer.h.(\d+).attn.c_proj.bias", r"transformer.layers.\1.mixer.out_proj.bias", key |
|
) |
|
return key |
|
|
|
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items()) |
|
|
|
return state_dict |
|
|
|
|
|
def btlm_config_to_gpt2_config(btlm_config: PretrainedConfig) -> GPT2Config: |
|
return GPT2Config( |
|
vocab_size=btlm_config.vocab_size, |
|
n_positions=0 if btlm_config.position_embedding_type == "alibi" else btlm_config.n_positions, |
|
n_embd=btlm_config.hidden_size, |
|
n_layer=btlm_config.num_hidden_layers, |
|
n_head=btlm_config.num_attention_heads, |
|
n_inner=btlm_config.n_inner, |
|
activation_function=btlm_config.activation_function, |
|
resid_pdrop=btlm_config.resid_pdrop, |
|
embd_pdrop=btlm_config.embd_pdrop, |
|
attn_pdrop=btlm_config.attn_pdrop, |
|
layer_norm_epsilon=btlm_config.layer_norm_epsilon, |
|
initializer_range=btlm_config.initializer_range, |
|
bos_token_id=btlm_config.bos_token_id, |
|
eos_token_id=btlm_config.eos_token_id, |
|
|
|
use_alibi=btlm_config.position_embedding_type == "alibi", |
|
use_flash_attn=btlm_config.position_embedding_type == "alibi", |
|
mup_width_scale=btlm_config.mup_width_scale, |
|
mup_embeddings_multiplier=btlm_config.mup_embeddings_scale, |
|
mup_output_multiplier=btlm_config.mup_output_alpha, |
|
mup_scale_qk_dot_by_d=btlm_config.mup_scale_qk_dot_by_d, |
|
mlp_multiple_of=1, |
|
) |
|
|