flash-attention / baichuan.py
theonlyengine's picture
Upload 421 files
3f9c425 verified
raw
history blame
5.73 kB
# Copyright (c) 2023, GGGGGGXY, Tri Dao.
import math
import json
import re
from pathlib import Path
from collections import OrderedDict
import torch
import torch.nn.functional as F
from einops import rearrange
from transformers import GPT2Config, AutoConfig, PretrainedConfig
def remap_state_dict_hf_baichuan(state_dict, config):
def key_mapping_layers(key):
return re.sub(r"^model.", "transformer.", key)
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
# Word embedding
def key_mapping_emb(key):
return re.sub(
r"^transformer.embed_tokens.",
"transformer.embeddings.word_embeddings.",
key,
)
state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight")
# It's possible that vocab_size is padded to be a multiple of 8, for example.
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
vocab_size = (
math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple)
* pad_vocab_size_multiple
)
state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
)
if getattr(config, "tie_word_embeddings"):
state_dict["lm_head.weight"] = state_dict[
"transformer.embeddings.word_embeddings.weight"
]
else:
output_embeddings = state_dict.pop("lm_head.weight")
# Need to recompute vocab_size since Baichuan shards the word embeddings and output embeddings
# differently.
vocab_size = (
math.ceil(output_embeddings.shape[0] / pad_vocab_size_multiple)
* pad_vocab_size_multiple
)
# It's possible that vocab_size is padded to be a multiple of 8, for example.
state_dict["lm_head.weight"] = F.pad(
output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
)
# LayerNorm
def key_mapping_ln(key):
key = re.sub(r"^transformer.norm.", r"transformer.ln_f.", key)
key = re.sub(
r"^transformer.layers.(\d+).input_layernorm.",
r"transformer.layers.\1.norm1.",
key,
)
key = re.sub(
r"^transformer.layers.(\d+).post_attention_layernorm.",
r"transformer.layers.\1.norm2.",
key,
)
return key
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
# MLP
for l in range(config.n_layer):
w1 = state_dict.pop(f"transformer.layers.{l}.mlp.gate_proj.weight")
w3 = state_dict.pop(f"transformer.layers.{l}.mlp.up_proj.weight")
# Our ordering is different
state_dict[f"transformer.layers.{l}.mlp.fc1.weight"] = torch.cat(
[w3, w1], dim=0
)
def key_mapping_mlp(key):
return re.sub(
r"^transformer.layers.(\d+).mlp.down_proj.",
r"transformer.layers.\1.mlp.fc2.",
key,
)
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
# Attention
def key_mapping_attn(key):
key = re.sub(
r"^transformer.layers.(\d+).self_attn.W_pack.",
r"transformer.layers.\1.mixer.Wqkv.",
key,
)
key = re.sub(
r"^transformer.layers.(\d+).self_attn.o_proj.",
r"transformer.layers.\1.mixer.out_proj.",
key,
)
return key
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
for l in range(config.n_layer):
# pop rotary_emb.inv_freq from state dict
state_dict.pop(f"transformer.layers.{l}.self_attn.rotary_emb.inv_freq", None)
return state_dict
def baichuan_config_to_gpt2_config(baichuan_config: PretrainedConfig) -> GPT2Config:
# HACK: the config doesn't have say whether it's rotary or alibi.
# So we have to infer from the hidden size (7B -> rotary, 13B -> alibi).
# HACK: the config doesn't have say whether it uses norm head.
# So we have to infer from the vocab size
# (v1, vocab size 64k, no norm head; v2, vocab size 128k, norm head).
use_rotary = baichuan_config.hidden_size < 5000
return GPT2Config(
vocab_size=baichuan_config.vocab_size,
n_positions=0, # No absolute position embedding
n_embd=baichuan_config.hidden_size,
n_layer=baichuan_config.num_hidden_layers,
n_head=baichuan_config.num_attention_heads,
n_inner=baichuan_config.intermediate_size,
activation_function="swiglu", # Hardcode since HF calls it 'silu'
# baichuan doesn't have dropout, idk if it's because they only release the inference code
resid_pdrop=0.0,
embd_pdrop=0.0,
attn_pdrop=0.0,
layer_norm_epsilon=baichuan_config.rms_norm_eps,
initializer_range=baichuan_config.initializer_range,
bos_token_id=baichuan_config.bos_token_id,
eos_token_id=baichuan_config.eos_token_id,
# These are new arguments not in the original GPT2Config
pad_token_id=baichuan_config.pad_token_id, # Idk if this does anything
rms_norm=True,
rotary_emb_fraction=1.0 if use_rotary else 0.0,
rotary_emb_interleaved=False,
use_alibi=not use_rotary,
use_flash_attn=not use_rotary, # Alibi code path requires flash_attn
tie_word_embeddings=False,
norm_head=baichuan_config.vocab_size > 70000,
qkv_proj_bias=False,
out_proj_bias=False,
mlp_fc1_bias=False,
mlp_fc2_bias=False,
)