File size: 9,383 Bytes
3f9c425 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import math
import re
from collections import OrderedDict
import torch
import torch.nn.functional as F
from transformers import GPT2Config, GPTBigCodeConfig, PretrainedConfig
def remap_state_dict_hf_bigcode(state_dict, config: PretrainedConfig):
"""
Map the state_dict of a Huggingface BigCode model to be flash_attn compatible.
"""
# Word embedding and position embedding
def key_mapping_pos_emb(key):
return re.sub(r"^transformer.wpe.", "transformer.embeddings.position_embeddings.", key)
state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items())
word_embeddings = state_dict.pop("transformer.wte.weight")
# It's possible that vocab_size is padded to be a multiple of 8, for example.
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
)
state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
# LayerNorm
def key_mapping_ln(key):
key = re.sub(r"^transformer.ln_f.(weight|bias)", r"transformer.ln_f.\1", key)
key = re.sub(
r"^transformer.h.(\d+).ln_(1|2).(weight|bias)",
r"transformer.layers.\1.norm\2.\3",
key,
)
return key
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
def key_mapping_mlp(key):
key = re.sub(
r"^transformer.h.(\d+).mlp.c_fc.weight",
r"transformer.layers.\1.mlp.fc1.weight",
key,
)
key = re.sub(
r"^transformer.h.(\d+).mlp.c_proj.weight",
r"transformer.layers.\1.mlp.fc2.weight",
key,
)
key = re.sub(
r"^transformer.h.(\d+).mlp.c_fc.bias",
r"transformer.layers.\1.mlp.fc1.bias",
key,
)
key = re.sub(
r"^transformer.h.(\d+).mlp.c_proj.bias",
r"transformer.layers.\1.mlp.fc2.bias",
key,
)
return key
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
# TODO: add support for multi-head attention
assert config.multi_query, "Only multi-query attention is supported"
# Attention
for d in range(config.num_hidden_layers):
embed_dim = config.n_embd
head_dim = embed_dim // config.n_head
c_attn_weight = state_dict.pop(f"transformer.h.{d}.attn.c_attn.weight")
# with multi-query attention, the weights have shape (embed_dim, embed_dim + head_dim + head_dim)
# see https://github.com/huggingface/transformers/blob/95b374952dc27d8511541d6f5a4e22c9ec11fb24/src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py#L112
# see also https://github.com/ggerganov/ggml/blob/dd1d575956e54c5bdc07632f25506b3b1884dbd2/examples/starcoder/convert-hf-to-ggml.py#L183
# ((n_head + 2) * head_dim, embed_dim) -> (3 * n_heads * head_dim, hidden_dim)
q, k, v = torch.split(c_attn_weight, [embed_dim, head_dim, head_dim], dim=0)
# duplicate k, v along the first axis (head_dim, hidden_dim) -> (n_heads * head_dim, hidden_dim)
k = torch.tile(k, (config.n_head, 1))
v = torch.tile(v, (config.n_head, 1))
state_dict[f"transformer.layers.{d}.mixer.Wqkv.weight"] = torch.cat((q, k, v), dim=0)
# same deal with the bias
c_attn_bias = state_dict.pop(f"transformer.h.{d}.attn.c_attn.bias")
# ((n_head + 2) * head_dim, embed_dim) -> (3 * n_heads * head_dim, hidden_dim)
q, k, v = torch.split(c_attn_bias, [embed_dim, head_dim, head_dim], dim=0)
# duplicate k, v along the first axis (head_dim, hidden_dim) -> (n_heads * head_dim, hidden_dim)
k = torch.tile(k, (config.n_head,))
v = torch.tile(v, (config.n_head,))
state_dict[f"transformer.layers.{d}.mixer.Wqkv.bias"] = torch.cat((q, k, v), dim=0)
def key_mapping_attn(key):
key = re.sub(
r"^transformer.h.(\d+).attn.c_proj.weight",
r"transformer.layers.\1.mixer.out_proj.weight",
key,
)
key = re.sub(
r"^transformer.h.(\d+).attn.c_proj.bias",
r"transformer.layers.\1.mixer.out_proj.bias",
key,
)
return key
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
return state_dict
def inv_remap_state_dict_hf_bigcode(state_dict, config: PretrainedConfig):
"""
Map the state_dict of a flash_attn model to be Huggingface BigCode compatible.
This function is meant to be the inverse of remap_state_dict_hf_bigcode.
"""
# Word embedding and position embeddings
def inv_key_mapping_pos_emb(key):
return re.sub(r"^transformer.embeddings.position_embeddings.", "transformer.wpe.", key)
state_dict = OrderedDict((inv_key_mapping_pos_emb(k), v) for k, v in state_dict.items())
word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight")
word_embeddings = word_embeddings[:, : config.vocab_size]
state_dict["transformer.wte.weight"] = word_embeddings
state_dict["lm_head.weight"] = word_embeddings
# LayerNorm
def inv_key_mapping_ln(key):
key = re.sub(r"^transformer.ln_f.(weight|bias)", r"transformer.ln_f.\1", key)
key = re.sub(
r"^transformer.layers.(\d+).norm(1|2).(weight|bias)",
r"transformer.h.\1.ln_\2.\3",
key,
)
return key
state_dict = OrderedDict((inv_key_mapping_ln(k), v) for k, v in state_dict.items())
# MLPs
def inv_key_mapping_mlp(key):
key = re.sub(
r"^transformer.layers.(\d+).mlp.fc1.weight",
r"transformer.h.\1.mlp.c_fc.weight",
key,
)
key = re.sub(
r"^transformer.layers.(\d+).mlp.fc2.weight",
r"transformer.h.\1.mlp.c_proj.weight",
key,
)
key = re.sub(
r"^transformer.layers.(\d+).mlp.fc1.bias",
r"transformer.h.\1.mlp.c_fc.bias",
key,
)
key = re.sub(
r"^transformer.layers.(\d+).mlp.fc2.bias",
r"transformer.h.\1.mlp.c_proj.bias",
key,
)
return key
state_dict = OrderedDict((inv_key_mapping_mlp(k), v) for k, v in state_dict.items())
# Attention
for d in range(config.num_hidden_layers):
embed_dim = config.n_embd
head_dim = embed_dim // config.n_head
Wqkv_weight = state_dict.pop(f"transformer.layers.{d}.mixer.Wqkv.weight")
q, k, v = torch.split(
Wqkv_weight, [embed_dim, head_dim * config.n_head, head_dim * config.n_head], dim=0
)
c_attn_weight = torch.cat((q, k[:head_dim], v[:head_dim]), dim=0)
state_dict[f"transformer.h.{d}.attn.c_attn.weight"] = c_attn_weight
# Same deal with the bias
Wqkv_bias = state_dict.pop(f"transformer.layers.{d}.mixer.Wqkv.bias")
q, k, v = torch.split(
Wqkv_bias, [embed_dim, head_dim * config.n_head, head_dim * config.n_head], dim=0
)
c_attn_bias = torch.cat((q, k[:head_dim], v[:head_dim]), dim=0)
state_dict[f"transformer.h.{d}.attn.c_attn.bias"] = c_attn_bias
def inv_key_mapping_attn(key):
key = re.sub(
r"^transformer.layers.(\d+).mixer.out_proj.weight",
r"transformer.h.\1.attn.c_proj.weight",
key,
)
key = re.sub(
r"^transformer.layers.(\d+).mixer.out_proj.bias",
r"transformer.h.\1.attn.c_proj.bias",
key,
)
return key
state_dict = OrderedDict((inv_key_mapping_attn(k), v) for k, v in state_dict.items())
return state_dict
def bigcode_config_to_gpt2_config(bigcode_config: GPTBigCodeConfig) -> GPT2Config:
return GPT2Config(
activation_function=bigcode_config.activation_function,
attn_pdrop=bigcode_config.attn_pdrop,
bos_token_id=bigcode_config.bos_token_id,
embd_pdrop=bigcode_config.embd_pdrop,
eos_token_id=bigcode_config.eos_token_id,
initializer_range=bigcode_config.initializer_range,
layer_norm_epsilon=bigcode_config.layer_norm_epsilon,
max_batch_size=bigcode_config.max_batch_size,
max_sequence_length=bigcode_config.max_sequence_length,
model_type=bigcode_config.model_type,
multi_query=bigcode_config.multi_query,
n_embd=bigcode_config.n_embd,
n_head=bigcode_config.n_head,
n_inner=bigcode_config.n_inner,
n_layer=bigcode_config.n_layer,
n_positions=bigcode_config.n_positions,
resid_pdrop=bigcode_config.resid_pdrop,
scale_attn_weights=bigcode_config.scale_attn_weights,
summary_activation=bigcode_config.summary_activation,
summary_first_dropout=bigcode_config.summary_first_dropout,
summary_proj_to_labels=bigcode_config.summary_proj_to_labels,
summary_type=bigcode_config.summary_type,
summary_use_proj=bigcode_config.summary_use_proj,
use_cache=bigcode_config.use_cache,
vocab_size=bigcode_config.vocab_size,
)
|