File size: 10,022 Bytes
3f9c425 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
from functools import partial
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
# from flash_attn.utils.benchmark import benchmark_forward, benchmark_backward, benchmark_combined, benchmark_all, benchmark_fwd_bwd, pytorch_profiler
from flash_attn.utils.benchmark import benchmark_forward, benchmark_backward, benchmark_combined, benchmark_all, benchmark_fwd_bwd, pytorch_profiler
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func
# # from flash_attn.triton.fused_attention import attention as attention
# from flash_attn.flash_attn_triton import flash_attn_qkvpacked_func
# from flash_attn.flash_attn_triton_og import attention as attention_og
# from triton.ops.flash_attention import attention as attention_triton
from flash_attn import flash_attn_qkvpacked_func, flash_attn_kvpacked_func
try:
from flash_attn.fused_softmax import scaled_upper_triang_masked_softmax
except ImportError:
scaled_upper_triang_masked_softmax = None
def attention_pytorch(qkv, dropout_p=0.0, causal=True):
"""
Arguments:
qkv: (batch_size, seqlen, 3, nheads, head_dim)
dropout_p: float
Output:
output: (batch_size, seqlen, nheads, head_dim)
"""
batch_size, seqlen, _, nheads, d = qkv.shape
q, k, v = qkv.unbind(dim=2)
q = rearrange(q, 'b t h d -> (b h) t d')
k = rearrange(k, 'b s h d -> (b h) d s')
softmax_scale = 1.0 / math.sqrt(d)
# Preallocate attn_weights for `baddbmm`
scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device)
scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale),
'(b h) t s -> b h t s', h=nheads)
if causal:
# "triu_tril_cuda_template" not implemented for 'BFloat16'
# So we have to construct the mask in float
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
scores = scores + causal_mask.to(dtype=scores.dtype)
attention = torch.softmax(scores, dim=-1)
attention_drop = F.dropout(attention, dropout_p)
output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
return output.to(dtype=qkv.dtype)
def attention_megatron(qkv):
"""
Arguments:
qkv: (batch_size, seqlen, 3, nheads, head_dim)
Output:
output: (batch_size, seqlen, nheads, head_dim)
"""
batch_size, seqlen, _, nheads, d = qkv.shape
q, k, v = qkv.unbind(dim=2)
q = rearrange(q, 'b t h d -> (b h) t d')
k = rearrange(k, 'b s h d -> (b h) d s')
softmax_scale = 1.0 / math.sqrt(d)
# Preallocate attn_weights for `baddbmm`
scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device)
scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale),
'(b h) t s -> b h t s', h=nheads)
attention = scaled_upper_triang_masked_softmax(scores, None, scale=1.0)
output = torch.einsum('bhts,bshd->bthd', attention, v)
return output.to(dtype=qkv.dtype)
torch.manual_seed(0)
repeats = 30
batch_size = 8
seqlen = 2048
nheads = 12
headdim = 128
# nheads = 24
# headdim = 64
# batch_size = 64
# seqlen = 512
# nheads = 8
# headdim = 128
dropout_p = 0.0
causal = True
dtype = torch.float16
device = 'cuda'
qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype,
requires_grad=True)
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
device=qkv.device)
qkv_unpad = rearrange(qkv, 'b s ... -> (b s) ...').detach().requires_grad_(True)
# benchmark_all(flash_attn_varlen_qkvpacked_func, qkv_unpad,
# cu_seqlens, seqlen, dropout_p, causal=causal, repeats=repeats, desc='FlashAttention')
# pytorch_profiler(flash_attn_varlen_qkvpacked_func, qkv_unpad,
# cu_seqlens, seqlen, dropout_p, causal=causal, backward=True)
benchmark_forward(flash_attn_qkvpacked_func, qkv, dropout_p, causal=causal, repeats=repeats, desc='Fav2')
pytorch_profiler(flash_attn_qkvpacked_func, qkv, dropout_p, causal=causal, backward=False)
# for dropout_p in [0.1, 0.0]:
# for causal in [False, True]:
# print(f"### {dropout_p = }, {causal = } ###")
# pytorch_profiler(fav2_qkvpacked_func, qkv, dropout_p, causal=causal, backward=True)
# nheads_k = 2
# q = torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype, requires_grad=True)
# kv = torch.randn(batch_size, seqlen, 2, nheads_k, headdim, device=device, dtype=dtype,
# requires_grad=True)
# if fav2_kvpacked_func is not None:
# benchmark_all(fav2_kvpacked_func, q, kv, dropout_p, causal=causal, repeats=repeats, desc='Fav2')
# pytorch_profiler(fav2_kvpacked_func, q, kv, dropout_p, causal=causal, backward=True)
# dropout_p = 0.0
# causal = False
# benchmark_all(attention_pytorch, qkv, dropout_p, causal=causal,
# repeats=repeats, desc='PyTorch Attention')
# benchmark_all(flash_attn_qkvpacked_func, qkv, None, causal, repeats=repeats, desc='FlashAttention Triton')
# pytorch_profiler(flash_attn_qkvpacked_func, qkv, None, causal, backward=True)
# q, k, v = [torch.randn(batch_size, nheads, seqlen, headdim, device=device, dtype=dtype,
# requires_grad=True) for _ in range(3)]
# benchmark_all(attention_og, q, k, v, 1.0, repeats=repeats, desc='FlashAttention Triton OG')
# # pytorch_profiler(attention, q, k, v, 1.0, backward=True)
# if scaled_upper_triang_masked_softmax is not None:
# benchmark_all(attention_megatron, qkv, repeats=repeats, desc='Megatron Attention')
# from src.ops.fftconv import fftconv_func
# dim = nheads * headdim
# u = torch.randn(batch_size, dim, seqlen, device=device, dtype=dtype, requires_grad=True)
# k = torch.randn(dim, seqlen, device=device, requires_grad=True)
# D = torch.randn(dim, device=device, requires_grad=True)
# benchmark_all(fftconv_func, u, k, D, repeats=repeats, desc='FFTConv')
# pytorch_profiler(fftconv_func, u, k, D, backward=True)
# pytorch_profiler(torch.fft.rfft, u.float())
flops = 4 * batch_size * seqlen ** 2 * nheads * headdim
ideal_a100_time = flops / 312 / 1e9
print(f"Ideal A100 fwd time: {ideal_a100_time:.3f}ms, bwd time: {ideal_a100_time * 2.5:.3f}ms")
exit(0)
def time_fwd_bwd(func, *args, **kwargs):
time_f, time_b = benchmark_fwd_bwd(func, *args, **kwargs)
return time_f[1].mean, time_b[1].mean
bs_seqlen_vals = [(32, 512), (16, 1024), (8, 2048), (4, 4096), (2, 8192), (1, 16384)]
causal_vals = [False, True]
headdim_vals = [64, 128]
dim = 2048
dropout_p = 0.0
time_f = {}
time_b = {}
for causal in causal_vals:
for headdim in headdim_vals:
for batch_size, seqlen in bs_seqlen_vals:
nheads = dim // headdim
qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype,
requires_grad=True)
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
device=qkv.device)
qkv_unpad = rearrange(qkv, 'b s ... -> (b s) ...').detach().requires_grad_(True)
f, b = time_fwd_bwd(
flash_attn_varlen_qkvpacked_func, qkv_unpad, cu_seqlens, seqlen, dropout_p,
causal=causal, repeats=repeats, verbose=False
)
time_f[(causal, headdim, batch_size, seqlen), "Flash"] = f
time_b[(causal, headdim, batch_size, seqlen), "Flash"] = b
qkv = qkv.detach().requires_grad_(True)
f, b = time_fwd_bwd(
fav2_qkvpacked_func, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False
)
time_f[(causal, headdim, batch_size, seqlen), "Flash2"] = f
time_b[(causal, headdim, batch_size, seqlen), "Flash2"] = b
# q, k, v = [torch.randn(batch_size, nheads, seqlen, headdim, device=device, dtype=dtype,
# requires_grad=True) for _ in range(3)]
# # Try both values of sequence_parallel and pick the faster one
# f, b = time_fwd_bwd(
# attention_triton, q, k, v, causal, headdim**(-0.5),
# False, repeats=repeats, verbose=False
# )
# _, b0 = time_fwd_bwd(
# attention_triton, q, k, v, causal, headdim**(-0.5),
# True, repeats=repeats, verbose=False
# )
# time_f[(causal, headdim, batch_size, seqlen), "Triton"] = f
# time_b[(causal, headdim, batch_size, seqlen), "Triton"] = min(b, b0)
if seqlen <= 8 * 1024:
qkv = qkv.detach().requires_grad_(True)
f, b = time_fwd_bwd(
attention_pytorch, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False
)
else:
f, b = float('nan'), float('nan')
time_f[(causal, headdim, batch_size, seqlen), "Pytorch"] = f
time_b[(causal, headdim, batch_size, seqlen), "Pytorch"] = b
# q, k, v = [torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype,
# requires_grad=True) for _ in range(3)]
# import xformers.ops as xops
# f, b = time_fwd_bwd(
# xops.memory_efficient_attention, q, k, v,
# attn_bias=xops.LowerTriangularMask() if causal else None,
# op=(xops.fmha.cutlass.FwOp, xops.fmha.cutlass.BwOp)
# )
# time_f[(causal, headdim, batch_size, seqlen), "xformers"] = f
# time_b[(causal, headdim, batch_size, seqlen), "xformers"] = b
import pickle
with open('flash2_attn_time_h100.plk', 'wb') as fp:
pickle.dump((time_f, time_b), fp, protocol=pickle.HIGHEST_PROTOCOL)
|