theolepage
commited on
Commit
•
430712c
1
Parent(s):
1e28455
initial commit
Browse files- .gitignore +6 -0
- DatasetLoader.py +309 -0
- README.md +96 -0
- SpeakerNet.py +372 -0
- configs/wavlm_mhfa_dlg_lc.yaml +33 -0
- configs/wavlm_mhfa_dlg_lc_lmft.yaml +33 -0
- loss/aamsoftmax.py +140 -0
- models/Baseline/Spk_Encoder.py +112 -0
- models/Baseline/WavLM.py +749 -0
- models/Baseline/modules.py +827 -0
- optimizer/adamw.py +10 -0
- pseudo_labeling.py +79 -0
- requirements.txt +10 -0
- scheduler/steplr.py +16 -0
- tools/rsync_jz.sh +23 -0
- trainSpeakerNet.py +395 -0
- trainSpeakerNet_Eval.py +250 -0
- train_ddp_jz.sh +19 -0
- training_framework.svg +0 -0
- tuneThreshold.py +87 -0
- utils.py +38 -0
.gitignore
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
|
3 |
+
exp/
|
4 |
+
data/
|
5 |
+
|
6 |
+
WavLM-Base+.pt
|
DatasetLoader.py
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! /usr/bin/python
|
2 |
+
# -*- encoding: utf-8 -*-
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import numpy
|
6 |
+
import random
|
7 |
+
import pdb
|
8 |
+
import os
|
9 |
+
import threading
|
10 |
+
import time
|
11 |
+
import math
|
12 |
+
import glob
|
13 |
+
# import soundfile
|
14 |
+
from scipy import signal
|
15 |
+
import soundfile
|
16 |
+
from torch.utils.data import Dataset, DataLoader
|
17 |
+
import torch.distributed as dist
|
18 |
+
|
19 |
+
def round_down(num, divisor):
|
20 |
+
return num - (num%divisor)
|
21 |
+
|
22 |
+
def worker_init_fn(worker_id):
|
23 |
+
numpy.random.seed(numpy.random.get_state()[1][0] + worker_id)
|
24 |
+
|
25 |
+
|
26 |
+
def loadWAV(filename, max_frames, evalmode=True, num_eval=5):
|
27 |
+
|
28 |
+
# Maximum audio length
|
29 |
+
max_audio = max_frames * 160 + 240
|
30 |
+
|
31 |
+
# Read wav file and convert to torch tensor
|
32 |
+
audio, sample_rate = soundfile.read(filename)
|
33 |
+
|
34 |
+
|
35 |
+
audiosize = audio.shape[0]
|
36 |
+
|
37 |
+
if audiosize <= max_audio:
|
38 |
+
shortage = max_audio - audiosize + 1
|
39 |
+
audio = numpy.pad(audio, (0, shortage), 'wrap')
|
40 |
+
audiosize = audio.shape[0]
|
41 |
+
|
42 |
+
if evalmode:
|
43 |
+
startframe = numpy.linspace(0,audiosize-max_audio,num=num_eval)
|
44 |
+
else:
|
45 |
+
startframe = numpy.array([numpy.int64(random.random()*(audiosize-max_audio))])
|
46 |
+
|
47 |
+
feats = []
|
48 |
+
if evalmode and max_frames == 0:
|
49 |
+
feats.append(audio)
|
50 |
+
else:
|
51 |
+
for asf in startframe:
|
52 |
+
feats.append(audio[int(asf):int(asf)+max_audio])
|
53 |
+
|
54 |
+
feat = numpy.stack(feats,axis=0).astype(float)
|
55 |
+
|
56 |
+
return feat;
|
57 |
+
|
58 |
+
class AugmentWAV(object):
|
59 |
+
|
60 |
+
def __init__(self, musan_path, rir_path, max_frames):
|
61 |
+
|
62 |
+
self.max_frames = max_frames
|
63 |
+
self.max_audio = max_audio = max_frames * 160 + 240
|
64 |
+
|
65 |
+
self.noisetypes = ['noise','speech','music']
|
66 |
+
|
67 |
+
self.noisesnr = {'noise':[0,15],'speech':[13,20],'music':[5,15]}
|
68 |
+
self.numnoise = {'noise':[1,1], 'speech':[3,8], 'music':[1,1] }
|
69 |
+
self.noiselist = {}
|
70 |
+
|
71 |
+
augment_files = glob.glob(os.path.join(musan_path,'*/*/*.wav'));
|
72 |
+
|
73 |
+
for file in augment_files:
|
74 |
+
if not file.split('/')[-3] in self.noiselist:
|
75 |
+
self.noiselist[file.split('/')[-3]] = []
|
76 |
+
self.noiselist[file.split('/')[-3]].append(file)
|
77 |
+
|
78 |
+
self.rir_files = glob.glob(os.path.join(rir_path,'*/*/*.wav'));
|
79 |
+
|
80 |
+
def additive_noise(self, noisecat, audio):
|
81 |
+
|
82 |
+
clean_db = 10 * numpy.log10(numpy.mean(audio ** 2)+1e-4)
|
83 |
+
|
84 |
+
numnoise = self.numnoise[noisecat]
|
85 |
+
noiselist = random.sample(self.noiselist[noisecat], random.randint(numnoise[0],numnoise[1]))
|
86 |
+
|
87 |
+
noises = []
|
88 |
+
|
89 |
+
for noise in noiselist:
|
90 |
+
|
91 |
+
noiseaudio = loadWAV(noise, self.max_frames, evalmode=False)
|
92 |
+
noise_snr = random.uniform(self.noisesnr[noisecat][0],self.noisesnr[noisecat][1])
|
93 |
+
noise_db = 10 * numpy.log10(numpy.mean(noiseaudio[0] ** 2)+1e-4)
|
94 |
+
noises.append(numpy.sqrt(10 ** ((clean_db - noise_db - noise_snr) / 10)) * noiseaudio)
|
95 |
+
|
96 |
+
return numpy.sum(numpy.concatenate(noises,axis=0),axis=0,keepdims=True) + audio
|
97 |
+
|
98 |
+
def reverberate(self, audio):
|
99 |
+
|
100 |
+
rir_file = random.choice(self.rir_files)
|
101 |
+
|
102 |
+
rir, fs = soundfile.read(rir_file)
|
103 |
+
rir = numpy.expand_dims(rir.astype(float),0)
|
104 |
+
rir = rir / numpy.sqrt(numpy.sum(rir**2))
|
105 |
+
|
106 |
+
return signal.convolve(audio, rir, mode='full')[:,:self.max_audio]
|
107 |
+
|
108 |
+
|
109 |
+
class train_dataset_loader(Dataset):
|
110 |
+
def __init__(self, train_list, augment, musan_path, rir_path, max_frames, train_path, **kwargs):
|
111 |
+
|
112 |
+
self.augment_wav = AugmentWAV(musan_path=musan_path, rir_path=rir_path, max_frames = max_frames)
|
113 |
+
|
114 |
+
self.train_list = train_list
|
115 |
+
self.max_frames = max_frames;
|
116 |
+
self.musan_path = musan_path
|
117 |
+
self.rir_path = rir_path
|
118 |
+
self.augment = augment
|
119 |
+
|
120 |
+
# Read training files
|
121 |
+
with open(train_list) as dataset_file:
|
122 |
+
lines = dataset_file.readlines();
|
123 |
+
|
124 |
+
# Make a dictionary of ID names and ID indices
|
125 |
+
dictkeys = list(set([x.split()[0] for x in lines]))
|
126 |
+
dictkeys.sort()
|
127 |
+
dictkeys = { key : ii for ii, key in enumerate(dictkeys) }
|
128 |
+
|
129 |
+
# Parse the training list into file names and ID indices
|
130 |
+
self.data_list = []
|
131 |
+
self.data_label = []
|
132 |
+
|
133 |
+
for lidx, line in enumerate(lines):
|
134 |
+
data = line.strip().split();
|
135 |
+
|
136 |
+
speaker_label = dictkeys[data[0]];
|
137 |
+
filename = os.path.join(train_path,data[1]);
|
138 |
+
|
139 |
+
self.data_label.append(speaker_label)
|
140 |
+
self.data_list.append(filename)
|
141 |
+
|
142 |
+
|
143 |
+
def __getitem__(self, indices):
|
144 |
+
|
145 |
+
feat_clean = []
|
146 |
+
feat = []
|
147 |
+
|
148 |
+
for index in indices:
|
149 |
+
try:
|
150 |
+
audio_clean = loadWAV(self.data_list[index], self.max_frames, evalmode=False)
|
151 |
+
except:
|
152 |
+
print(self.data_list[index])
|
153 |
+
|
154 |
+
if len(audio_clean.shape) == 3:
|
155 |
+
print(self.data_list[index])
|
156 |
+
|
157 |
+
if self.augment:
|
158 |
+
augtype = random.randint(0,5)
|
159 |
+
if augtype == 0:
|
160 |
+
audio = audio_clean
|
161 |
+
elif augtype == 1:
|
162 |
+
audio = self.augment_wav.reverberate(audio_clean)
|
163 |
+
elif augtype == 2:
|
164 |
+
audio = self.augment_wav.additive_noise('music',audio_clean)
|
165 |
+
elif augtype == 3:
|
166 |
+
audio = self.augment_wav.additive_noise('speech',audio_clean)
|
167 |
+
elif augtype == 4:
|
168 |
+
audio = self.augment_wav.additive_noise('noise',audio_clean)
|
169 |
+
elif augtype == 5:
|
170 |
+
audio = self.augment_wav.additive_noise('speech',audio_clean)
|
171 |
+
audio = self.augment_wav.additive_noise('music',audio_clean)
|
172 |
+
|
173 |
+
feat_clean.append(audio_clean)
|
174 |
+
feat.append(audio)
|
175 |
+
|
176 |
+
feat_clean = numpy.concatenate(feat_clean, axis=0)
|
177 |
+
feat = numpy.concatenate(feat, axis=0)
|
178 |
+
|
179 |
+
return torch.FloatTensor(feat_clean), torch.FloatTensor(feat), self.data_label[index], self.data_list[index]
|
180 |
+
|
181 |
+
def __len__(self):
|
182 |
+
return len(self.data_list)
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
class test_dataset_loader(Dataset):
|
187 |
+
def __init__(self, test_list, test_path, eval_frames, num_eval, **kwargs):
|
188 |
+
self.max_frames = eval_frames;
|
189 |
+
self.num_eval = num_eval
|
190 |
+
self.test_path = test_path
|
191 |
+
self.test_list = test_list
|
192 |
+
|
193 |
+
def __getitem__(self, index):
|
194 |
+
# print(self.test_list[index])
|
195 |
+
audio = loadWAV(os.path.join(self.test_path,self.test_list[index]), self.max_frames, evalmode=True, num_eval=self.num_eval)
|
196 |
+
|
197 |
+
audio2 = loadWAV(os.path.join(self.test_path,self.test_list[index]), 0, evalmode=True, num_eval=self.num_eval)
|
198 |
+
|
199 |
+
return torch.FloatTensor(audio), torch.FloatTensor(audio2), self.test_list[index]
|
200 |
+
# return torch.FloatTensor(audio2), self.test_list[index]
|
201 |
+
|
202 |
+
def __len__(self):
|
203 |
+
return len(self.test_list)
|
204 |
+
|
205 |
+
|
206 |
+
class train_dataset_sampler(torch.utils.data.Sampler):
|
207 |
+
def __init__(self, data_source, nPerSpeaker, max_seg_per_spk, batch_size, distributed, seed, **kwargs):
|
208 |
+
|
209 |
+
self.data_label = data_source.data_label;
|
210 |
+
self.nPerSpeaker = nPerSpeaker;
|
211 |
+
self.max_seg_per_spk = max_seg_per_spk;
|
212 |
+
self.batch_size = batch_size;
|
213 |
+
self.epoch = 0;
|
214 |
+
self.seed = seed;
|
215 |
+
self.distributed = distributed;
|
216 |
+
|
217 |
+
def __iter__(self):
|
218 |
+
|
219 |
+
g = torch.Generator()
|
220 |
+
g.manual_seed(self.seed + self.epoch)
|
221 |
+
indices = torch.randperm(len(self.data_label), generator=g).tolist()
|
222 |
+
|
223 |
+
data_dict = {}
|
224 |
+
|
225 |
+
# Sort into dictionary of file indices for each ID
|
226 |
+
for index in indices:
|
227 |
+
speaker_label = self.data_label[index]
|
228 |
+
if not (speaker_label in data_dict):
|
229 |
+
data_dict[speaker_label] = [];
|
230 |
+
data_dict[speaker_label].append(index);
|
231 |
+
|
232 |
+
|
233 |
+
## Group file indices for each class
|
234 |
+
dictkeys = list(data_dict.keys());
|
235 |
+
dictkeys.sort()
|
236 |
+
|
237 |
+
lol = lambda lst, sz: [lst[i:i+sz] for i in range(0, len(lst), sz)]
|
238 |
+
|
239 |
+
flattened_list = []
|
240 |
+
flattened_label = []
|
241 |
+
|
242 |
+
for findex, key in enumerate(dictkeys):
|
243 |
+
data = data_dict[key]
|
244 |
+
numSeg = round_down(min(len(data),self.max_seg_per_spk),self.nPerSpeaker)
|
245 |
+
|
246 |
+
rp = lol(numpy.arange(numSeg),self.nPerSpeaker)
|
247 |
+
flattened_label.extend([findex] * (len(rp)))
|
248 |
+
for indices in rp:
|
249 |
+
flattened_list.append([data[i] for i in indices])
|
250 |
+
|
251 |
+
## Mix data in random order
|
252 |
+
mixid = torch.randperm(len(flattened_label), generator=g).tolist()
|
253 |
+
mixlabel = []
|
254 |
+
mixmap = []
|
255 |
+
|
256 |
+
## Prevent two pairs of the same speaker in the same batch
|
257 |
+
for ii in mixid:
|
258 |
+
startbatch = round_down(len(mixlabel), self.batch_size)
|
259 |
+
if flattened_label[ii] not in mixlabel[startbatch:]:
|
260 |
+
mixlabel.append(flattened_label[ii])
|
261 |
+
mixmap.append(ii)
|
262 |
+
|
263 |
+
mixed_list = [flattened_list[i] for i in mixmap]
|
264 |
+
|
265 |
+
## Divide data to each GPU
|
266 |
+
if self.distributed:
|
267 |
+
total_size = round_down(len(mixed_list), self.batch_size * dist.get_world_size())
|
268 |
+
start_index = int ( ( dist.get_rank() ) / dist.get_world_size() * total_size )
|
269 |
+
end_index = int ( ( dist.get_rank() + 1 ) / dist.get_world_size() * total_size )
|
270 |
+
self.num_samples = end_index - start_index
|
271 |
+
return iter(mixed_list[start_index:end_index])
|
272 |
+
else:
|
273 |
+
total_size = round_down(len(mixed_list), self.batch_size)
|
274 |
+
self.num_samples = total_size
|
275 |
+
return iter(mixed_list[:total_size])
|
276 |
+
|
277 |
+
|
278 |
+
def __len__(self) -> int:
|
279 |
+
return self.num_samples
|
280 |
+
|
281 |
+
def set_epoch(self, epoch: int) -> None:
|
282 |
+
self.epoch = epoch
|
283 |
+
|
284 |
+
|
285 |
+
if __name__ == '__main__':
|
286 |
+
train_dataset = train_dataset_loader(train_list='/mnt/proj3/open-24-5/pengjy_new/WavLM_Adapter/CNCeleb_lst/CNCeleb_trainlist_200spk.txt',
|
287 |
+
augment=False,
|
288 |
+
musan_path='/mnt/proj3/open-24-5/pengjy_new/musan_split/',
|
289 |
+
rir_path='/mnt/proj3/open-24-5/plchot/data_augment/16kHz/simulated_rirs/',
|
290 |
+
max_frames=300,
|
291 |
+
train_path='/mnt/proj3/open-24-5/pengjy_new/Data/CN-Celeb_flac/data',
|
292 |
+
)
|
293 |
+
|
294 |
+
train_sampler = train_dataset_sampler(train_dataset, nPerSpeaker=1, max_seg_per_spk=500, batch_size=100, distributed=False,seed=120)
|
295 |
+
# train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
|
296 |
+
|
297 |
+
train_loader = torch.utils.data.DataLoader(
|
298 |
+
train_dataset,
|
299 |
+
batch_size=100,
|
300 |
+
num_workers=10,
|
301 |
+
sampler=train_sampler,
|
302 |
+
pin_memory=True,
|
303 |
+
drop_last=True,
|
304 |
+
)
|
305 |
+
for data, data_label in train_loader:
|
306 |
+
print(data.shape)
|
307 |
+
data = data.transpose(1,0)
|
308 |
+
print(data.shape)
|
309 |
+
quit()
|
README.md
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# wavlm_ssl_sv
|
2 |
+
|
3 |
+
This repository contains the source code of the article **Towards Supervised Performance on Speaker Verification with Self-Supervised Learning by Leveraging Large-Scale ASR Models** (INTERSPEECH 2024) [[arXiv]](https://arxiv.org/pdf/2406.02285).
|
4 |
+
|
5 |
+
The proposed framework fine-tunes a pre-trained **WavLM** using pseudo-labels, generated through **Self-Supervised Learning** (SSL), for **Speaker Verification** (SV). Initial pseudo-labels are derived from an SSL DINO-based model and are iteratively refined by clustering the model embeddings.
|
6 |
+
|
7 |
+
<p align="center">
|
8 |
+
<img src="training_framework.svg" width=900 />
|
9 |
+
</p>
|
10 |
+
|
11 |
+
Our method achieves **0.99% EER on VoxCeleb1-O**, establishing the new SOTA on Speaker Verification with SSL.
|
12 |
+
|
13 |
+
*Please refer to the article for more details on the implementation and a comparative study with other works.*
|
14 |
+
|
15 |
+
---
|
16 |
+
|
17 |
+
## Usage
|
18 |
+
|
19 |
+
### Installation
|
20 |
+
|
21 |
+
- Install dependencies with `pip install -r requirements.txt`.
|
22 |
+
- Prepare data for VoxCeleb, MUSAN, and RIR datasets following [voxceleb_trainer](https://github.com/clovaai/voxceleb_trainer#data-preparation).
|
23 |
+
- Download [WavLM-Base+ model](https://github.com/microsoft/unilm/tree/master/wavlm) and place `WavLM-Base+.pt` at the root folder.
|
24 |
+
|
25 |
+
### Training
|
26 |
+
|
27 |
+
#### Step 1: Extract DINO speaker embeddings
|
28 |
+
|
29 |
+
The code to train the DINO model is not currently provided. We recommend using [sslsv](https://github.com/theolepage/sslsv) or [3D-Speaker](https://github.com/modelscope/3D-Speaker) to extract initial speaker embeddings.
|
30 |
+
|
31 |
+
Alternatively, you can directly download the DINO embeddings we used for our system: [dino_vox2_embeddings.pt](https://drive.google.com/file/d/1YnxrMIgrr6NQgZ3Hv2_5YdP5W8xfdyLH/view?usp=sharing).
|
32 |
+
|
33 |
+
*Note: the embeddings file must be a `Dict[str, torch.Tensor]` representing all VoxCeleb2 samples with the following format for keys: `id00012/21Uxsk56VDQ/00001.wav`.*
|
34 |
+
|
35 |
+
#### Step 2: Generate pseudo-labels
|
36 |
+
|
37 |
+
```bash
|
38 |
+
python pseudo_labeling.py PATH_TO_EMBEDDINGS_FILE PATH_TO_PL_FILE
|
39 |
+
```
|
40 |
+
|
41 |
+
#### Step 3: Fine-tune WavLM MHFA
|
42 |
+
|
43 |
+
```bash
|
44 |
+
python trainSpeakerNet.py --config configs/wavlm_mhfa_dlg_lc.yaml --train_list PATH_TO_PL_FILE --distributed
|
45 |
+
```
|
46 |
+
|
47 |
+
#### Iterative process
|
48 |
+
|
49 |
+
1. Extract embeddings from the WavLM MHFA model:
|
50 |
+
`python trainSpeakerNet_Eval.py --config configs/wavlm_mhfa_dlg_lc.yaml --generate_embeddings --embeddings_path PATH_TO_EMBEDDINGS_FILE`.
|
51 |
+
|
52 |
+
2. Repeat steps 2 and 3. *Make sure to change `save_path` in the config to avoid overwriting the existing model.*
|
53 |
+
|
54 |
+
#### Step 4: Large-Margin Fine-Tuning
|
55 |
+
|
56 |
+
1. Copy the latest model checkpoint to `exp/wavlm_mhfa_dlg_lc_lmft/model` to resume training.
|
57 |
+
|
58 |
+
2. Start training: `python trainSpeakerNet.py --config configs/wavlm_mhfa_dlg_lc_lmft.yaml --train_list PATH_TO_PL_FILE --distributed`.
|
59 |
+
|
60 |
+
### Evaluation
|
61 |
+
|
62 |
+
```bash
|
63 |
+
python trainSpeakerNet_Eval.py --config configs/wavlm_mhfa_dlg_lc_lmft.yaml --eval
|
64 |
+
```
|
65 |
+
|
66 |
+
### Model weights
|
67 |
+
|
68 |
+
The checkpoint of our best model reaching 0.99% EER on VoxCeleb1-O is available for download: [`wavlm_mhfa_dlg_lc_lmft`](https://drive.google.com/drive/folders/1ygZPvdGwepWDDfIQp6aPRktt2QxLt6cE?usp=drive_link).
|
69 |
+
|
70 |
+
---
|
71 |
+
|
72 |
+
## Acknowledgements
|
73 |
+
|
74 |
+
This repository contains third-party components and code adapted from other open-source projects, including: [SLT22_MultiHead-Factorized-Attentive-Pooling](https://github.com/JunyiPeng00/SLT22_MultiHead-Factorized-Attentive-Pooling) and [Loss-Gated-Learning](https://github.com/TaoRuijie/Loss-Gated-Learning).
|
75 |
+
|
76 |
+
---
|
77 |
+
|
78 |
+
## Citation
|
79 |
+
|
80 |
+
If you use this project, please consider starring this repository on GitHub and citing the following paper.
|
81 |
+
|
82 |
+
```BibTeX
|
83 |
+
@InProceedings{miara2024WavLMSSLSV,
|
84 |
+
author = {Miara, Victor and Lepage, Théo and Dehak, Réda},
|
85 |
+
booktitle = {INTERSPEECH},
|
86 |
+
title = {Towards Supervised Performance on Speaker Verification with Self-Supervised Learning by Leveraging Large-Scale ASR Models},
|
87 |
+
year = {2024},
|
88 |
+
url = {https://arxiv.org/abs/2406.02285},
|
89 |
+
}
|
90 |
+
```
|
91 |
+
|
92 |
+
---
|
93 |
+
|
94 |
+
## License
|
95 |
+
|
96 |
+
This project is released under the [MIT License](https://github.com/theolepage/wavlm_ssl_sv/blob/main/LICENSE.md).
|
SpeakerNet.py
ADDED
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
#-*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import numpy, math, pdb, sys, random
|
8 |
+
import time, os, itertools, shutil, importlib
|
9 |
+
from tuneThreshold import tuneThresholdfromScore
|
10 |
+
from DatasetLoader import test_dataset_loader, loadWAV
|
11 |
+
import pickle
|
12 |
+
import numpy as np
|
13 |
+
import time
|
14 |
+
from tqdm import tqdm
|
15 |
+
import soundfile
|
16 |
+
|
17 |
+
|
18 |
+
class WrappedModel(nn.Module):
|
19 |
+
|
20 |
+
## The purpose of this wrapper is to make the model structure consistent between single and multi-GPU
|
21 |
+
|
22 |
+
def __init__(self, model):
|
23 |
+
super(WrappedModel, self).__init__()
|
24 |
+
self.module = model
|
25 |
+
|
26 |
+
def forward(self, x, x_clean=None, label=None,l2_reg_dict=None, epoch=-1):
|
27 |
+
return self.module(x, x_clean, label, epoch=epoch)
|
28 |
+
|
29 |
+
|
30 |
+
class SpeakerNet(nn.Module):
|
31 |
+
|
32 |
+
def __init__(self, model, optimizer, trainfunc, nPerSpeaker, **kwargs):
|
33 |
+
super(SpeakerNet, self).__init__()
|
34 |
+
|
35 |
+
SpeakerNetModel = importlib.import_module('models.'+model).__getattribute__('MainModel')
|
36 |
+
self.__S__ = SpeakerNetModel(**kwargs);
|
37 |
+
|
38 |
+
LossFunction = importlib.import_module('loss.'+trainfunc).__getattribute__('LossFunction')
|
39 |
+
self.__L__ = LossFunction(**kwargs);
|
40 |
+
|
41 |
+
self.nPerSpeaker = nPerSpeaker
|
42 |
+
self.weight_finetuning_reg = kwargs['weight_finetuning_reg']
|
43 |
+
|
44 |
+
|
45 |
+
def forward(self, data, data_clean=None, label=None, l2_reg_dict=None, epoch=-1):
|
46 |
+
if label is None:
|
47 |
+
data_reshape = data[0].cuda()
|
48 |
+
outp = self.__S__.forward([data_reshape, data[1]])
|
49 |
+
return outp
|
50 |
+
elif len(data) == 3 and data[2] == "gen_ps":
|
51 |
+
data_reshape = data[0].reshape(-1,data[0].size()[-1]).cuda()
|
52 |
+
outp = self.__S__.forward([data_reshape, data[1]])
|
53 |
+
pseudo_labels = self.__L__.get_pseudo_labels(outp, label)
|
54 |
+
return pseudo_labels
|
55 |
+
else:
|
56 |
+
data_reshape = data[0].reshape(-1,data[0].size()[-1]).cuda()
|
57 |
+
data_clean_reshape = data_clean.reshape(-1,data_clean.size()[-1]).cuda()
|
58 |
+
outp = self.__S__.forward([data_reshape, data[1]])
|
59 |
+
outp_clean = self.__S__.forward([data_clean_reshape, data[1]])
|
60 |
+
nloss, prec1, ce = self.__L__.forward(outp, outp_clean, label, epoch)
|
61 |
+
|
62 |
+
if l2_reg_dict is not None:
|
63 |
+
Learned_dict = l2_reg_dict
|
64 |
+
l2_reg = 0
|
65 |
+
for name,param in self.__S__.model.named_parameters():
|
66 |
+
if name in Learned_dict:
|
67 |
+
l2_reg = l2_reg + torch.norm(param-Learned_dict[name].cuda(),2)
|
68 |
+
tloss = nloss/nloss.detach() + self.weight_finetuning_reg*l2_reg/(l2_reg.detach()+1e-5)
|
69 |
+
else:
|
70 |
+
tloss = nloss
|
71 |
+
print("Without L2 Reg")
|
72 |
+
|
73 |
+
return tloss, prec1, nloss, ce
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
class ModelTrainer(object):
|
79 |
+
|
80 |
+
def __init__(self, speaker_model, optimizer, scheduler, gpu, mixedprec, **kwargs):
|
81 |
+
|
82 |
+
self.__model__ = speaker_model
|
83 |
+
|
84 |
+
WavLM_params = list(map(id, self.__model__.module.__S__.model.parameters()))
|
85 |
+
Backend_params = filter(lambda p: id(p) not in WavLM_params, self.__model__.module.parameters())
|
86 |
+
self.path = kwargs['pretrained_model_path']
|
87 |
+
|
88 |
+
Optimizer = importlib.import_module('optimizer.'+optimizer).__getattribute__('Optimizer')
|
89 |
+
|
90 |
+
# Define the initial param groups
|
91 |
+
param_groups = [{'params': Backend_params, 'lr': kwargs['LR_MHFA']}]
|
92 |
+
|
93 |
+
# Extract the encoder layers
|
94 |
+
encoder_layers = self.__model__.module.__S__.model.encoder.layers
|
95 |
+
|
96 |
+
# Iterate over the encoder layers to create param groups
|
97 |
+
for i in range(12): # Assuming 12 layers from 0 to 11 (for BASE model, when it comes to LARGE model, 12->24)
|
98 |
+
lr = kwargs['LR_Transformer'] * (kwargs['LLRD_factor'] ** i)
|
99 |
+
param_groups.append({'params': encoder_layers[i].parameters(), 'lr': lr})
|
100 |
+
|
101 |
+
# Initialize the optimizer with these param groups
|
102 |
+
self.__optimizer__ = Optimizer(param_groups, **kwargs)
|
103 |
+
|
104 |
+
# self.__optimizer__ = Optimizer(self.__model__.parameters(), **kwargs)
|
105 |
+
# print('scheduler.'+scheduler)
|
106 |
+
Scheduler = importlib.import_module('scheduler.'+scheduler).__getattribute__('Scheduler')
|
107 |
+
# print(kwargs)
|
108 |
+
try:
|
109 |
+
self.__scheduler__, self.lr_step = Scheduler(self.__optimizer__, **kwargs)
|
110 |
+
except:
|
111 |
+
self.__scheduler__, self.lr_step = Scheduler(self.__optimizer__, lr_decay=0.9, **kwargs)
|
112 |
+
|
113 |
+
# self.scaler = GradScaler()
|
114 |
+
|
115 |
+
self.gpu = gpu
|
116 |
+
|
117 |
+
self.mixedprec = mixedprec
|
118 |
+
print("Mix prec: %s"%(self.mixedprec))
|
119 |
+
|
120 |
+
assert self.lr_step in ['epoch', 'iteration']
|
121 |
+
|
122 |
+
# ## ===== ===== ===== ===== ===== ===== ===== =====
|
123 |
+
# ## Train network
|
124 |
+
# ## ===== ===== ===== ===== ===== ===== ===== =====
|
125 |
+
|
126 |
+
def update_lgl_threshold(self, lgl_threshold):
|
127 |
+
self.__model__.module.__L__.lgl_threshold = lgl_threshold
|
128 |
+
|
129 |
+
# """
|
130 |
+
def train_network(self, loader, loss_vals_path, epoch, verbose):
|
131 |
+
if torch.distributed.is_initialized():
|
132 |
+
rank = torch.distributed.get_rank()
|
133 |
+
unique_loss_vals_path = f"{loss_vals_path.split('.')[0]}_rank{rank}.txt"
|
134 |
+
else:
|
135 |
+
unique_loss_vals_path = loss_vals_path
|
136 |
+
|
137 |
+
self.__model__.train();
|
138 |
+
|
139 |
+
stepsize = loader.batch_size;
|
140 |
+
|
141 |
+
counter = 0;
|
142 |
+
index = 0;
|
143 |
+
loss = 0;
|
144 |
+
top1 = 0 # EER or accuracy
|
145 |
+
|
146 |
+
tstart = time.time()
|
147 |
+
Learned_dict = {}
|
148 |
+
checkpoint = torch.load(self.path)
|
149 |
+
for name, param in checkpoint['model'].items():
|
150 |
+
if 'w2v_encoder.w2v_model.' in name:
|
151 |
+
newname = name.replace('w2v_encoder.w2v_model.', '')
|
152 |
+
else:
|
153 |
+
newname = name
|
154 |
+
Learned_dict[newname] = param;
|
155 |
+
|
156 |
+
# for data_clean, data, data_label, data_path in loader:
|
157 |
+
# telapsed = time.time() - tstart
|
158 |
+
# tstart = time.time()
|
159 |
+
# counter += 1;
|
160 |
+
# index += stepsize
|
161 |
+
# sys.stdout.write("\rProcessing (%d) "%(index));
|
162 |
+
# sys.stdout.write("Loss %f TEER/TAcc %2.3f%% - %.2f Hz "%(loss/counter, top1/counter, stepsize/telapsed));
|
163 |
+
# if counter % 100 == 0:
|
164 |
+
# sys.stdout.flush()
|
165 |
+
|
166 |
+
with open(unique_loss_vals_path, 'w') as loss_vals_file:
|
167 |
+
for data_clean, data, data_label, data_path in loader:
|
168 |
+
data_clean = data_clean.transpose(1,0)
|
169 |
+
data = data.transpose(1,0)
|
170 |
+
self.__model__.zero_grad()
|
171 |
+
label = torch.LongTensor(data_label).cuda()
|
172 |
+
|
173 |
+
nloss, prec1, spkloss, ce = self.__model__([data,"train"], data_clean, label, Learned_dict, epoch=epoch)
|
174 |
+
|
175 |
+
for ce_val, path in zip(ce.detach().cpu().numpy(), data_path):
|
176 |
+
loss_vals_file.write(f'{ce_val} {"/".join(path.split("/")[5:])}\n')
|
177 |
+
|
178 |
+
nloss.backward()
|
179 |
+
|
180 |
+
self.__optimizer__.step();
|
181 |
+
|
182 |
+
loss += spkloss.detach().cpu()
|
183 |
+
top1 += prec1.detach().cpu()
|
184 |
+
|
185 |
+
|
186 |
+
counter += 1;
|
187 |
+
index += stepsize;
|
188 |
+
|
189 |
+
|
190 |
+
|
191 |
+
telapsed = time.time() - tstart
|
192 |
+
tstart = time.time()
|
193 |
+
|
194 |
+
if verbose:
|
195 |
+
sys.stdout.write("\rProcessing (%d) "%(index));
|
196 |
+
sys.stdout.write("Loss %f TEER/TAcc %2.3f%% - %.2f Hz "%(loss/counter, top1/counter, stepsize/telapsed));
|
197 |
+
sys.stdout.flush();
|
198 |
+
|
199 |
+
if self.lr_step == 'iteration': self.__scheduler__.step()
|
200 |
+
|
201 |
+
if self.lr_step == 'epoch': self.__scheduler__.step()
|
202 |
+
|
203 |
+
sys.stdout.write("\n");
|
204 |
+
return (loss/counter, top1/counter);
|
205 |
+
# """
|
206 |
+
|
207 |
+
## ===== ===== ===== ===== ===== ===== ===== =====
|
208 |
+
## Evaluate from list
|
209 |
+
## ===== ===== ===== ===== ===== ===== ===== =====
|
210 |
+
|
211 |
+
def evaluateFromList(self, test_list, test_path, nDataLoaderThread, print_interval=10, num_eval=15, **kwargs):
|
212 |
+
|
213 |
+
self.__model__.eval();
|
214 |
+
|
215 |
+
lines = []
|
216 |
+
files = []
|
217 |
+
feats = {}
|
218 |
+
tstart = time.time()
|
219 |
+
|
220 |
+
## Read all lines
|
221 |
+
with open(test_list) as f:
|
222 |
+
lines = f.readlines()
|
223 |
+
|
224 |
+
## Get a list of unique file names
|
225 |
+
files = sum([x.strip().split()[-2:] for x in lines],[])
|
226 |
+
setfiles = list(set(files))
|
227 |
+
setfiles.sort()
|
228 |
+
|
229 |
+
## Define test data loader
|
230 |
+
test_dataset = test_dataset_loader(setfiles, test_path, num_eval=num_eval, **kwargs)
|
231 |
+
test_loader = torch.utils.data.DataLoader(
|
232 |
+
test_dataset,
|
233 |
+
batch_size=1,
|
234 |
+
shuffle=False,
|
235 |
+
num_workers=nDataLoaderThread,
|
236 |
+
drop_last=False,
|
237 |
+
)
|
238 |
+
ref_feat_list = []
|
239 |
+
ref_feat_2_list = []
|
240 |
+
max_len = 0
|
241 |
+
forward = 0
|
242 |
+
## Extract features for every image
|
243 |
+
for idx, data in enumerate(test_loader):
|
244 |
+
|
245 |
+
|
246 |
+
inp1 = data[0][0].cuda()
|
247 |
+
inp2 = data[1][0].cuda()
|
248 |
+
telapsed_2 = time.time()
|
249 |
+
b,utt_l = inp2.shape
|
250 |
+
if utt_l > max_len:
|
251 |
+
max_len = utt_l
|
252 |
+
ref_feat = self.__model__([inp1, "test"]).cuda()
|
253 |
+
ref_feat = ref_feat.detach().cpu()
|
254 |
+
ref_feat_2 = self.__model__([inp2[:,:700000], "test"]).cuda() # The reason why here is set to 700000 is due to GPU memory size.
|
255 |
+
ref_feat_2 = ref_feat_2.detach().cpu()
|
256 |
+
|
257 |
+
feats[data[2][0]] = [ref_feat,ref_feat_2]
|
258 |
+
|
259 |
+
ref_feat_list.extend(ref_feat.numpy())
|
260 |
+
ref_feat_2_list.extend(ref_feat_2.numpy())
|
261 |
+
|
262 |
+
telapsed = time.time() - tstart
|
263 |
+
forward = forward + time.time() - telapsed_2
|
264 |
+
|
265 |
+
if idx % print_interval == 0:
|
266 |
+
sys.stdout.write("\rReading %d of %d: %.2f Hz, forward speed: %.2f Hz, embedding size %d, max_len %d"%(idx,len(setfiles),idx/telapsed,idx/forward, ref_feat.size()[-1],max_len));
|
267 |
+
|
268 |
+
print('')
|
269 |
+
all_scores = [];
|
270 |
+
all_labels = [];
|
271 |
+
all_trials = [];
|
272 |
+
all_scores_1 = [];
|
273 |
+
all_scores_2 = [];
|
274 |
+
|
275 |
+
tstart = time.time()
|
276 |
+
|
277 |
+
ref_feat_list = numpy.array(ref_feat_list)
|
278 |
+
ref_feat_2_list = numpy.array(ref_feat_2_list)
|
279 |
+
|
280 |
+
ref_feat_list_mean = 0
|
281 |
+
ref_feat_2_list_mean = 0
|
282 |
+
|
283 |
+
|
284 |
+
## Read files and compute all scores
|
285 |
+
for idx, line in enumerate(lines):
|
286 |
+
|
287 |
+
data = line.split();
|
288 |
+
|
289 |
+
## Append random label if missing
|
290 |
+
if len(data) == 2: data = [random.randint(0,1)] + data
|
291 |
+
|
292 |
+
ref_feat,ref_feat_2 = feats[data[1]]
|
293 |
+
com_feat,com_feat_2 = feats[data[2]]
|
294 |
+
|
295 |
+
# if self.__model__.module.__L__.test_normalize:
|
296 |
+
ref_feat = F.normalize(ref_feat-ref_feat_list_mean, p=2, dim=1) # B, D
|
297 |
+
com_feat = F.normalize(com_feat-ref_feat_list_mean, p=2, dim=1)
|
298 |
+
ref_feat_2 = F.normalize(ref_feat_2-ref_feat_2_list_mean, p=2, dim=1) # B, D
|
299 |
+
com_feat_2 = F.normalize(com_feat_2-ref_feat_2_list_mean, p=2, dim=1)
|
300 |
+
|
301 |
+
score_1 = torch.mean(torch.matmul(ref_feat, com_feat.T)) # higher is positive
|
302 |
+
score_2 = torch.mean(torch.matmul(ref_feat_2, com_feat_2.T))
|
303 |
+
score = (score_1 + score_2) / 2
|
304 |
+
score = score.detach().cpu().numpy()
|
305 |
+
|
306 |
+
all_scores.append(score);
|
307 |
+
all_scores_1.append(score_1);
|
308 |
+
all_scores_2.append(score_2);
|
309 |
+
|
310 |
+
all_labels.append(int(data[0]));
|
311 |
+
all_trials.append(data[1]+" "+data[2])
|
312 |
+
|
313 |
+
if idx % (10*print_interval) == 0:
|
314 |
+
telapsed = time.time() - tstart
|
315 |
+
sys.stdout.write("\rComputing %d of %d: %.2f Hz"%(idx,len(lines),idx/telapsed));
|
316 |
+
sys.stdout.flush();
|
317 |
+
|
318 |
+
print('')
|
319 |
+
|
320 |
+
return (all_scores, all_labels, all_trials,all_scores_1,all_scores_2);
|
321 |
+
|
322 |
+
def generate_embeddings(self, wav_files, output, device):
|
323 |
+
res = {}
|
324 |
+
|
325 |
+
for file in tqdm(wav_files):
|
326 |
+
wav, sr = soundfile.read(file)
|
327 |
+
wav = torch.from_numpy(wav).float().to(device)
|
328 |
+
|
329 |
+
with torch.no_grad():
|
330 |
+
embedding = self.__model__([wav.unsqueeze(0), "test"]).detach().cpu()
|
331 |
+
|
332 |
+
key = '/'.join(file.split('/')[-3:])
|
333 |
+
res[key] = embedding
|
334 |
+
|
335 |
+
torch.save(res, output)
|
336 |
+
|
337 |
+
def saveParameters(self, path):
|
338 |
+
torch.save(self.__model__.module.state_dict(), path);
|
339 |
+
|
340 |
+
|
341 |
+
## ===== ===== ===== ===== ===== ===== ===== =====
|
342 |
+
## Load parameters
|
343 |
+
## ===== ===== ===== ===== ===== ===== ===== =====
|
344 |
+
|
345 |
+
def loadParameters(self, path):
|
346 |
+
|
347 |
+
self_state = self.__model__.module.state_dict();
|
348 |
+
loaded_state = torch.load(path, map_location="cuda:%d"%self.gpu);
|
349 |
+
# loaded_state = torch.load(path, map_location="cpu");
|
350 |
+
|
351 |
+
|
352 |
+
|
353 |
+
for name, param in loaded_state.items():
|
354 |
+
origname = name;
|
355 |
+
|
356 |
+
if name not in self_state:
|
357 |
+
name = name.replace("module.", "");
|
358 |
+
|
359 |
+
if name not in self_state:
|
360 |
+
print("%s is not in the model."%origname);
|
361 |
+
continue;
|
362 |
+
|
363 |
+
if self_state[name].size() != loaded_state[origname].size():
|
364 |
+
print("Wrong parameter length: %s, model: %s, loaded: %s"%(origname, self_state[name].size(), loaded_state[origname].size()));
|
365 |
+
continue;
|
366 |
+
|
367 |
+
self_state[name].copy_(param);
|
368 |
+
|
369 |
+
|
370 |
+
|
371 |
+
|
372 |
+
|
configs/wavlm_mhfa_dlg_lc.yaml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
max_frames: 300
|
2 |
+
max_epoch: 15
|
3 |
+
batch_size: 120
|
4 |
+
margin: 0.2
|
5 |
+
|
6 |
+
eval_frames: 400
|
7 |
+
augment: True
|
8 |
+
|
9 |
+
## Training details
|
10 |
+
trainfunc: aamsoftmax
|
11 |
+
|
12 |
+
scale: 30
|
13 |
+
|
14 |
+
lr_decay: 0.95
|
15 |
+
|
16 |
+
pretrained_model_path: WavLM-Base+.pt
|
17 |
+
weight_finetuning_reg: 0.01
|
18 |
+
LLRD_factor: 1.0
|
19 |
+
LR_Transformer: 2e-5
|
20 |
+
LR_MHFA: 5e-3
|
21 |
+
|
22 |
+
## Loss functions
|
23 |
+
nClasses: 7500
|
24 |
+
|
25 |
+
## Load and save
|
26 |
+
save_path: exp/wavlm_mhfa_dlg_lc
|
27 |
+
# save_path: exp/wavlm_mhfa_dlg_lc_iter2
|
28 |
+
|
29 |
+
## Model definition
|
30 |
+
model: Baseline.Spk_Encoder
|
31 |
+
|
32 |
+
nOut: 256
|
33 |
+
port: 6754
|
configs/wavlm_mhfa_dlg_lc_lmft.yaml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
max_frames: 600
|
2 |
+
max_epoch: 5
|
3 |
+
batch_size: 50
|
4 |
+
margin: 0.5
|
5 |
+
|
6 |
+
eval_frames: 400
|
7 |
+
augment: True
|
8 |
+
|
9 |
+
## Training details
|
10 |
+
trainfunc: aamsoftmax
|
11 |
+
|
12 |
+
scale: 30
|
13 |
+
|
14 |
+
lr: 5e-4
|
15 |
+
lr_decay: 0.95
|
16 |
+
|
17 |
+
pretrained_model_path: WavLM-Base+.pt
|
18 |
+
weight_finetuning_reg: 0.01
|
19 |
+
LLRD_factor: 1.0
|
20 |
+
LR_Transformer: 2e-5
|
21 |
+
LR_MHFA: 5e-3
|
22 |
+
|
23 |
+
## Loss functions
|
24 |
+
nClasses: 7500
|
25 |
+
|
26 |
+
## Load and save
|
27 |
+
save_path: exp/wavlm_mhfa_dlg_lc_lmft
|
28 |
+
|
29 |
+
## Model definition
|
30 |
+
model: Baseline.Spk_Encoder
|
31 |
+
|
32 |
+
nOut: 256
|
33 |
+
port: 6754
|
loss/aamsoftmax.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! /usr/bin/python
|
2 |
+
# -*- encoding: utf-8 -*-
|
3 |
+
# Adapted from https://github.com/wujiyang/Face_Pytorch (Apache License)
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import time, pdb, numpy, math
|
9 |
+
from utils import accuracy
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
class LossFunction(nn.Module):
|
13 |
+
def __init__(self, nOut, nClasses, margin=0.3, scale=15, easy_margin=False, **kwargs):
|
14 |
+
super(LossFunction, self).__init__()
|
15 |
+
|
16 |
+
self.test_normalize = True
|
17 |
+
|
18 |
+
self.m = margin
|
19 |
+
self.s = scale
|
20 |
+
self.in_feats = nOut
|
21 |
+
self.weight = torch.nn.Parameter(torch.FloatTensor(nClasses, nOut), requires_grad=True)
|
22 |
+
# self.ce = nn.CrossEntropyLoss()
|
23 |
+
self.ce = nn.CrossEntropyLoss(reduction='none') # return loss per sample
|
24 |
+
nn.init.xavier_normal_(self.weight, gain=1)
|
25 |
+
|
26 |
+
self.easy_margin = easy_margin
|
27 |
+
self.cos_m = math.cos(self.m)
|
28 |
+
self.sin_m = math.sin(self.m)
|
29 |
+
|
30 |
+
# make the function cos(theta+m) monotonic decreasing while theta in [0°,180°]
|
31 |
+
self.th = math.cos(math.pi - self.m)
|
32 |
+
self.mm = math.sin(math.pi - self.m) * self.m
|
33 |
+
|
34 |
+
self.lgl_threshold = 1e6
|
35 |
+
self.lc_threshold = 0.5
|
36 |
+
|
37 |
+
print('Initialised AAMSoftmax margin %.3f scale %.3f'%(self.m,self.s))
|
38 |
+
|
39 |
+
def _forward(self, x, label):
|
40 |
+
# cos(theta)
|
41 |
+
cosine = F.linear(F.normalize(x), F.normalize(self.weight))
|
42 |
+
# cos(theta + m)
|
43 |
+
sine = torch.sqrt((1.0 - torch.mul(cosine, cosine)).clamp(0, 1))
|
44 |
+
phi = cosine * self.cos_m - sine * self.sin_m
|
45 |
+
|
46 |
+
if self.easy_margin:
|
47 |
+
phi = torch.where(cosine > 0, phi, cosine)
|
48 |
+
else:
|
49 |
+
phi = torch.where((cosine - self.th) > 0, phi, cosine - self.mm)
|
50 |
+
|
51 |
+
#one_hot = torch.zeros(cosine.size(), device='cuda' if torch.cuda.is_available() else 'cpu')
|
52 |
+
one_hot = torch.zeros_like(cosine)
|
53 |
+
one_hot.scatter_(1, label.view(-1, 1), 1)
|
54 |
+
output = (one_hot * phi) + ((1.0 - one_hot) * cosine)
|
55 |
+
output = output * self.s
|
56 |
+
|
57 |
+
return output
|
58 |
+
|
59 |
+
def _forward_softmax_sharpened(self, x, e=0.1):
|
60 |
+
# regular softmax
|
61 |
+
output = F.linear(x, self.weight)
|
62 |
+
probas = F.softmax(output / e, dim=1)
|
63 |
+
return probas
|
64 |
+
|
65 |
+
def forward(self, x, x_clean, label=None, epoch=-1):
|
66 |
+
assert x.size()[0] == label.size()[0]
|
67 |
+
assert x.size()[1] == self.in_feats
|
68 |
+
|
69 |
+
output = self._forward(x, label)
|
70 |
+
output_clean = self._forward_softmax_sharpened(x_clean)
|
71 |
+
|
72 |
+
ce = self.ce(output, label)
|
73 |
+
|
74 |
+
# No LGL
|
75 |
+
# prec1 = accuracy(output.detach(), label.detach(), topk=(1,))[0]
|
76 |
+
# return ce, prec1, None
|
77 |
+
|
78 |
+
mask = (torch.log(ce) <= self.lgl_threshold).detach()
|
79 |
+
|
80 |
+
if epoch <= 8:
|
81 |
+
# LGL only
|
82 |
+
nselect = torch.clamp(sum(mask), min=1).item()
|
83 |
+
loss = torch.sum(ce * mask, dim=-1) / nselect
|
84 |
+
prec1 = accuracy(output.detach(), label * mask.detach(), topk=(1,))[0]
|
85 |
+
return loss, prec1, ce
|
86 |
+
|
87 |
+
# LGL + LC
|
88 |
+
|
89 |
+
label_LC = output_clean.argmax(dim=1)
|
90 |
+
|
91 |
+
max_vals = torch.gather(output_clean, 1, label_LC.unsqueeze(1)).squeeze(1)
|
92 |
+
mask_LC = (max_vals > self.lc_threshold).detach()
|
93 |
+
|
94 |
+
ce_LC = self.ce(output, label_LC)
|
95 |
+
|
96 |
+
mask_LGL_LC = ~mask & mask_LC
|
97 |
+
loss = torch.mean(ce * mask + ce_LC * mask_LGL_LC, dim=-1)
|
98 |
+
prec1 = accuracy(output.detach(), label * mask.detach() + label_LC * mask_LGL_LC.detach(), topk=(1,))[0]
|
99 |
+
|
100 |
+
return loss, prec1, ce
|
101 |
+
|
102 |
+
def get_pseudo_labels(self, x, label):
|
103 |
+
output = self._forward_softmax_sharpened(x)
|
104 |
+
return output.argmax(dim=1)
|
105 |
+
|
106 |
+
"""
|
107 |
+
def forward(self, x, x_clean, label=None):
|
108 |
+
|
109 |
+
assert x.size()[0] == label.size()[0]
|
110 |
+
assert x.size()[1] == self.in_feats
|
111 |
+
|
112 |
+
P_aam = self._forward(x, label)
|
113 |
+
|
114 |
+
P_softmax = self._forward_softmax_sharpened(x)
|
115 |
+
P_clean_softmax = self._forward_softmax_sharpened(x_clean)
|
116 |
+
|
117 |
+
ce = self.ce(P_aam, label)
|
118 |
+
|
119 |
+
# No LGL
|
120 |
+
# prec1 = accuracy(output.detach(), label.detach(), topk=(1,))[0]
|
121 |
+
# return ce, prec1, None
|
122 |
+
|
123 |
+
mask = (torch.log(ce) <= self.lgl_threshold).detach()
|
124 |
+
|
125 |
+
# LGL only
|
126 |
+
# nselect = torch.clamp(sum(mask), min=1).item()
|
127 |
+
# loss = torch.sum(ce * mask, dim=-1) / nselect
|
128 |
+
# prec1 = accuracy(output.detach(), label * mask.detach(), topk=(1,))[0]
|
129 |
+
# return loss, prec1, ce
|
130 |
+
|
131 |
+
# LGL + LC
|
132 |
+
label_LC = P_clean_softmax.argmax(dim=1)
|
133 |
+
ce_LC = self.ce(P_softmax, label_LC)
|
134 |
+
|
135 |
+
inverted_mask = ~mask
|
136 |
+
loss = torch.mean(ce * mask + ce_LC * inverted_mask, dim=-1)
|
137 |
+
prec1 = accuracy(P_softmax.detach(), label * mask.detach() + label_LC * inverted_mask.detach(), topk=(1,))[0]
|
138 |
+
|
139 |
+
return loss, prec1, ce
|
140 |
+
"""
|
models/Baseline/Spk_Encoder.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch.nn import LayerNorm
|
6 |
+
from .WavLM import *
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
|
11 |
+
class MHFA(nn.Module):
|
12 |
+
def __init__(self, head_nb=8, inputs_dim=768, compression_dim=128, outputs_dim=256):
|
13 |
+
super(MHFA, self).__init__()
|
14 |
+
|
15 |
+
# Define learnable weights for key and value computations across layers
|
16 |
+
self.weights_k = nn.Parameter(data=torch.ones(13), requires_grad=True)
|
17 |
+
self.weights_v = nn.Parameter(data=torch.ones(13), requires_grad=True)
|
18 |
+
|
19 |
+
# Initialize given parameters
|
20 |
+
self.head_nb = head_nb
|
21 |
+
self.ins_dim = inputs_dim
|
22 |
+
self.cmp_dim = compression_dim
|
23 |
+
self.ous_dim = outputs_dim
|
24 |
+
|
25 |
+
# Define compression linear layers for keys and values
|
26 |
+
self.cmp_linear_k = nn.Linear(self.ins_dim, self.cmp_dim)
|
27 |
+
self.cmp_linear_v = nn.Linear(self.ins_dim, self.cmp_dim)
|
28 |
+
|
29 |
+
# Define linear layer to compute multi-head attention weights
|
30 |
+
self.att_head = nn.Linear(self.cmp_dim, self.head_nb)
|
31 |
+
|
32 |
+
# Define a fully connected layer for final output
|
33 |
+
self.pooling_fc = nn.Linear(self.head_nb * self.cmp_dim, self.ous_dim)
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
# Input x has shape: [Batch, Dim, Frame_len, Nb_Layer]
|
37 |
+
|
38 |
+
# Compute the key by taking a weighted sum of input across layers
|
39 |
+
k = torch.sum(x.mul(nn.functional.softmax(self.weights_k, dim=-1)), dim=-1).transpose(1, 2)
|
40 |
+
|
41 |
+
# Compute the value in a similar fashion
|
42 |
+
v = torch.sum(x.mul(nn.functional.softmax(self.weights_v, dim=-1)), dim=-1).transpose(1, 2)
|
43 |
+
|
44 |
+
# Pass the keys and values through compression linear layers
|
45 |
+
k = self.cmp_linear_k(k)
|
46 |
+
v = self.cmp_linear_v(v)
|
47 |
+
|
48 |
+
# Compute attention weights using compressed keys
|
49 |
+
att_k = self.att_head(k)
|
50 |
+
|
51 |
+
# Adjust dimensions for computing attention output
|
52 |
+
v = v.unsqueeze(-2)
|
53 |
+
|
54 |
+
# Compute attention output by taking weighted sum of values using softmaxed attention weights
|
55 |
+
pooling_outs = torch.sum(v.mul(nn.functional.softmax(att_k, dim=1).unsqueeze(-1)), dim=1)
|
56 |
+
|
57 |
+
# Reshape the tensor before passing through the fully connected layer
|
58 |
+
b, h, f = pooling_outs.shape
|
59 |
+
pooling_outs = pooling_outs.reshape(b, -1)
|
60 |
+
|
61 |
+
# Pass through fully connected layer to get the final output
|
62 |
+
outs = self.pooling_fc(pooling_outs)
|
63 |
+
|
64 |
+
return outs
|
65 |
+
|
66 |
+
|
67 |
+
class spk_extractor(nn.Module):
|
68 |
+
def __init__(self,**kwargs):
|
69 |
+
super(spk_extractor, self).__init__()
|
70 |
+
# checkpoint = torch.load('/mnt/proj3/open-24-5/pengjy_new/WavLM/Pretrained_model/WavLM-Base+.pt')
|
71 |
+
print("Pre-trained Model: {}".format(kwargs['pretrained_model_path']))
|
72 |
+
checkpoint = torch.load(kwargs['pretrained_model_path'])
|
73 |
+
cfg = WavLMConfig(checkpoint['cfg'])
|
74 |
+
self.model = WavLM(cfg)
|
75 |
+
self.loadParameters(checkpoint['model'])
|
76 |
+
self.backend = MHFA(head_nb=64)
|
77 |
+
|
78 |
+
|
79 |
+
def forward(self,wav_and_flag):
|
80 |
+
|
81 |
+
x = wav_and_flag[0]
|
82 |
+
|
83 |
+
cnn_outs, layer_results = self.model.extract_features(x, output_layer=13)
|
84 |
+
layer_reps = [x.transpose(0, 1) for x, _ in layer_results]
|
85 |
+
x = torch.stack(layer_reps).transpose(0,-1).transpose(0,1)
|
86 |
+
|
87 |
+
out = self.backend(x)
|
88 |
+
return out
|
89 |
+
|
90 |
+
def loadParameters(self, param):
|
91 |
+
|
92 |
+
self_state = self.model.state_dict();
|
93 |
+
loaded_state = param
|
94 |
+
|
95 |
+
for name, param in loaded_state.items():
|
96 |
+
origname = name;
|
97 |
+
|
98 |
+
|
99 |
+
if name not in self_state:
|
100 |
+
# print("%s is not in the model."%origname);
|
101 |
+
continue;
|
102 |
+
|
103 |
+
if self_state[name].size() != loaded_state[origname].size():
|
104 |
+
print("Wrong parameter length: %s, model: %s, loaded: %s"%(origname, self_state[name].size(), loaded_state[origname].size()));
|
105 |
+
continue;
|
106 |
+
|
107 |
+
self_state[name].copy_(param);
|
108 |
+
|
109 |
+
|
110 |
+
def MainModel(**kwargs):
|
111 |
+
model = spk_extractor(**kwargs)
|
112 |
+
return model
|
models/Baseline/WavLM.py
ADDED
@@ -0,0 +1,749 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing (https://arxiv.org/abs/2110.13900.pdf)
|
3 |
+
# Github source: https://github.com/microsoft/unilm/tree/master/wavlm
|
4 |
+
# Copyright (c) 2021 Microsoft
|
5 |
+
# Licensed under The MIT License [see LICENSE for details]
|
6 |
+
# Based on fairseq code bases
|
7 |
+
# https://github.com/pytorch/fairseq
|
8 |
+
# --------------------------------------------------------
|
9 |
+
|
10 |
+
import math
|
11 |
+
import logging
|
12 |
+
from typing import List, Optional, Tuple
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn as nn
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from torch.nn import LayerNorm
|
20 |
+
from .modules import (
|
21 |
+
Fp32GroupNorm,
|
22 |
+
Fp32LayerNorm,
|
23 |
+
GradMultiply,
|
24 |
+
MultiheadAttention,
|
25 |
+
SamePad,
|
26 |
+
init_bert_params,
|
27 |
+
get_activation_fn,
|
28 |
+
TransposeLast,
|
29 |
+
GLU_Linear,
|
30 |
+
)
|
31 |
+
|
32 |
+
logger = logging.getLogger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
def compute_mask_indices(
|
36 |
+
shape: Tuple[int, int],
|
37 |
+
padding_mask: Optional[torch.Tensor],
|
38 |
+
mask_prob: float,
|
39 |
+
mask_length: int,
|
40 |
+
mask_type: str = "static",
|
41 |
+
mask_other: float = 0.0,
|
42 |
+
min_masks: int = 0,
|
43 |
+
no_overlap: bool = False,
|
44 |
+
min_space: int = 0,
|
45 |
+
) -> np.ndarray:
|
46 |
+
"""
|
47 |
+
Computes random mask spans for a given shape
|
48 |
+
|
49 |
+
Args:
|
50 |
+
shape: the the shape for which to compute masks.
|
51 |
+
should be of size 2 where first element is batch size and 2nd is timesteps
|
52 |
+
padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements
|
53 |
+
mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by
|
54 |
+
number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
|
55 |
+
however due to overlaps, the actual number will be smaller (unless no_overlap is True)
|
56 |
+
mask_type: how to compute mask lengths
|
57 |
+
static = fixed size
|
58 |
+
uniform = sample from uniform distribution [mask_other, mask_length*2]
|
59 |
+
normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element
|
60 |
+
poisson = sample from possion distribution with lambda = mask length
|
61 |
+
min_masks: minimum number of masked spans
|
62 |
+
no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping
|
63 |
+
min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans
|
64 |
+
"""
|
65 |
+
|
66 |
+
bsz, all_sz = shape
|
67 |
+
mask = np.full((bsz, all_sz), False)
|
68 |
+
|
69 |
+
all_num_mask = int(
|
70 |
+
# add a random number for probabilistic rounding
|
71 |
+
mask_prob * all_sz / float(mask_length)
|
72 |
+
+ np.random.rand()
|
73 |
+
)
|
74 |
+
|
75 |
+
all_num_mask = max(min_masks, all_num_mask)
|
76 |
+
|
77 |
+
mask_idcs = []
|
78 |
+
for i in range(bsz):
|
79 |
+
if padding_mask is not None:
|
80 |
+
sz = all_sz - padding_mask[i].long().sum().item()
|
81 |
+
num_mask = int(
|
82 |
+
# add a random number for probabilistic rounding
|
83 |
+
mask_prob * sz / float(mask_length)
|
84 |
+
+ np.random.rand()
|
85 |
+
)
|
86 |
+
num_mask = max(min_masks, num_mask)
|
87 |
+
else:
|
88 |
+
sz = all_sz
|
89 |
+
num_mask = all_num_mask
|
90 |
+
|
91 |
+
if mask_type == "static":
|
92 |
+
lengths = np.full(num_mask, mask_length)
|
93 |
+
elif mask_type == "uniform":
|
94 |
+
lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask)
|
95 |
+
elif mask_type == "normal":
|
96 |
+
lengths = np.random.normal(mask_length, mask_other, size=num_mask)
|
97 |
+
lengths = [max(1, int(round(x))) for x in lengths]
|
98 |
+
elif mask_type == "poisson":
|
99 |
+
lengths = np.random.poisson(mask_length, size=num_mask)
|
100 |
+
lengths = [int(round(x)) for x in lengths]
|
101 |
+
else:
|
102 |
+
raise Exception("unknown mask selection " + mask_type)
|
103 |
+
|
104 |
+
if sum(lengths) == 0:
|
105 |
+
lengths[0] = min(mask_length, sz - 1)
|
106 |
+
|
107 |
+
if no_overlap:
|
108 |
+
mask_idc = []
|
109 |
+
|
110 |
+
def arrange(s, e, length, keep_length):
|
111 |
+
span_start = np.random.randint(s, e - length)
|
112 |
+
mask_idc.extend(span_start + i for i in range(length))
|
113 |
+
|
114 |
+
new_parts = []
|
115 |
+
if span_start - s - min_space >= keep_length:
|
116 |
+
new_parts.append((s, span_start - min_space + 1))
|
117 |
+
if e - span_start - keep_length - min_space > keep_length:
|
118 |
+
new_parts.append((span_start + length + min_space, e))
|
119 |
+
return new_parts
|
120 |
+
|
121 |
+
parts = [(0, sz)]
|
122 |
+
min_length = min(lengths)
|
123 |
+
for length in sorted(lengths, reverse=True):
|
124 |
+
lens = np.fromiter(
|
125 |
+
(e - s if e - s >= length + min_space else 0 for s, e in parts),
|
126 |
+
np.int,
|
127 |
+
)
|
128 |
+
l_sum = np.sum(lens)
|
129 |
+
if l_sum == 0:
|
130 |
+
break
|
131 |
+
probs = lens / np.sum(lens)
|
132 |
+
c = np.random.choice(len(parts), p=probs)
|
133 |
+
s, e = parts.pop(c)
|
134 |
+
parts.extend(arrange(s, e, length, min_length))
|
135 |
+
mask_idc = np.asarray(mask_idc)
|
136 |
+
else:
|
137 |
+
min_len = min(lengths)
|
138 |
+
if sz - min_len <= num_mask:
|
139 |
+
min_len = sz - num_mask - 1
|
140 |
+
|
141 |
+
mask_idc = np.random.choice(sz - min_len, num_mask, replace=False)
|
142 |
+
|
143 |
+
mask_idc = np.asarray(
|
144 |
+
[
|
145 |
+
mask_idc[j] + offset
|
146 |
+
for j in range(len(mask_idc))
|
147 |
+
for offset in range(lengths[j])
|
148 |
+
]
|
149 |
+
)
|
150 |
+
|
151 |
+
mask_idcs.append(np.unique(mask_idc[mask_idc < sz]))
|
152 |
+
|
153 |
+
min_len = min([len(m) for m in mask_idcs])
|
154 |
+
for i, mask_idc in enumerate(mask_idcs):
|
155 |
+
if len(mask_idc) > min_len:
|
156 |
+
mask_idc = np.random.choice(mask_idc, min_len, replace=False)
|
157 |
+
mask[i, mask_idc] = True
|
158 |
+
|
159 |
+
return mask
|
160 |
+
|
161 |
+
|
162 |
+
class WavLMConfig:
|
163 |
+
def __init__(self, cfg=None):
|
164 |
+
self.extractor_mode: str = "default" # mode for feature extractor. default has a single group norm with d groups in the first conv block, whereas layer_norm has layer norms in every block (meant to use with normalize=True)
|
165 |
+
self.encoder_layers: int = 12 # num encoder layers in the transformer
|
166 |
+
|
167 |
+
self.encoder_embed_dim: int = 768 # encoder embedding dimension
|
168 |
+
self.encoder_ffn_embed_dim: int = 3072 # encoder embedding dimension for FFN
|
169 |
+
self.encoder_attention_heads: int = 12 # num encoder attention heads
|
170 |
+
self.activation_fn: str = "gelu" # activation function to use
|
171 |
+
|
172 |
+
self.layer_norm_first: bool = False # apply layernorm first in the transformer
|
173 |
+
self.conv_feature_layers: str = "[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2" # string describing convolutional feature extraction layers in form of a python list that contains [(dim, kernel_size, stride), ...]
|
174 |
+
self.conv_bias: bool = False # include bias in conv encoder
|
175 |
+
self.feature_grad_mult: float = 1.0 # multiply feature extractor var grads by this
|
176 |
+
|
177 |
+
self.normalize: bool = False # normalize input to have 0 mean and unit variance during training
|
178 |
+
|
179 |
+
# dropouts
|
180 |
+
self.dropout: float = 0.1 # dropout probability for the transformer
|
181 |
+
self.attention_dropout: float = 0.1 # dropout probability for attention weights
|
182 |
+
self.activation_dropout: float = 0.0 # dropout probability after activation in FFN
|
183 |
+
self.encoder_layerdrop: float = 0.0 # probability of dropping a tarnsformer layer
|
184 |
+
self.dropout_input: float = 0.0 # dropout to apply to the input (after feat extr)
|
185 |
+
self.dropout_features: float = 0.0 # dropout to apply to the features (after feat extr)
|
186 |
+
|
187 |
+
# masking
|
188 |
+
self.mask_length: int = 10 # mask length
|
189 |
+
self.mask_prob: float = 0.65 # probability of replacing a token with mask
|
190 |
+
self.mask_selection: str = "static" # how to choose mask length
|
191 |
+
self.mask_other: float = 0 # secondary mask argument (used for more complex distributions), see help in compute_mask_indicesh
|
192 |
+
self.no_mask_overlap: bool = False # whether to allow masks to overlap
|
193 |
+
self.mask_min_space: int = 1 # min space between spans (if no overlap is enabled)
|
194 |
+
|
195 |
+
# channel masking
|
196 |
+
self.mask_channel_length: int = 10 # length of the mask for features (channels)
|
197 |
+
self.mask_channel_prob: float = 0.0 # probability of replacing a feature with 0
|
198 |
+
self.mask_channel_selection: str = "static" # how to choose mask length for channel masking
|
199 |
+
self.mask_channel_other: float = 0 # secondary mask argument (used for more complex distributions), see help in compute_mask_indices
|
200 |
+
self.no_mask_channel_overlap: bool = False # whether to allow channel masks to overlap
|
201 |
+
self.mask_channel_min_space: int = 1 # min space between spans (if no overlap is enabled)
|
202 |
+
|
203 |
+
# positional embeddings
|
204 |
+
self.conv_pos: int = 128 # number of filters for convolutional positional embeddings
|
205 |
+
self.conv_pos_groups: int = 16 # number of groups for convolutional positional embedding
|
206 |
+
|
207 |
+
# relative position embedding
|
208 |
+
self.relative_position_embedding: bool = False # apply relative position embedding
|
209 |
+
self.num_buckets: int = 320 # number of buckets for relative position embedding
|
210 |
+
self.max_distance: int = 1280 # maximum distance for relative position embedding
|
211 |
+
self.gru_rel_pos: bool = False # apply gated relative position embedding
|
212 |
+
|
213 |
+
if cfg is not None:
|
214 |
+
self.update(cfg)
|
215 |
+
|
216 |
+
def update(self, cfg: dict):
|
217 |
+
self.__dict__.update(cfg)
|
218 |
+
|
219 |
+
|
220 |
+
class WavLM(nn.Module):
|
221 |
+
def __init__(
|
222 |
+
self,
|
223 |
+
cfg: WavLMConfig,
|
224 |
+
) -> None:
|
225 |
+
super().__init__()
|
226 |
+
logger.info(f"WavLM Config: {cfg.__dict__}")
|
227 |
+
|
228 |
+
self.cfg = cfg
|
229 |
+
feature_enc_layers = eval(cfg.conv_feature_layers)
|
230 |
+
self.embed = feature_enc_layers[-1][0]
|
231 |
+
|
232 |
+
self.feature_extractor = ConvFeatureExtractionModel(
|
233 |
+
conv_layers=feature_enc_layers,
|
234 |
+
dropout=0.0,
|
235 |
+
mode=cfg.extractor_mode,
|
236 |
+
conv_bias=cfg.conv_bias,
|
237 |
+
)
|
238 |
+
|
239 |
+
self.post_extract_proj = (
|
240 |
+
nn.Linear(self.embed, cfg.encoder_embed_dim)
|
241 |
+
if self.embed != cfg.encoder_embed_dim
|
242 |
+
else None
|
243 |
+
)
|
244 |
+
|
245 |
+
self.mask_prob = cfg.mask_prob
|
246 |
+
self.mask_selection = cfg.mask_selection
|
247 |
+
self.mask_other = cfg.mask_other
|
248 |
+
self.mask_length = cfg.mask_length
|
249 |
+
self.no_mask_overlap = cfg.no_mask_overlap
|
250 |
+
self.mask_min_space = cfg.mask_min_space
|
251 |
+
|
252 |
+
self.mask_channel_prob = cfg.mask_channel_prob
|
253 |
+
self.mask_channel_selection = cfg.mask_channel_selection
|
254 |
+
self.mask_channel_other = cfg.mask_channel_other
|
255 |
+
self.mask_channel_length = cfg.mask_channel_length
|
256 |
+
self.no_mask_channel_overlap = cfg.no_mask_channel_overlap
|
257 |
+
self.mask_channel_min_space = cfg.mask_channel_min_space
|
258 |
+
|
259 |
+
self.dropout_input = nn.Dropout(cfg.dropout_input)
|
260 |
+
self.dropout_features = nn.Dropout(cfg.dropout_features)
|
261 |
+
|
262 |
+
self.feature_grad_mult = cfg.feature_grad_mult
|
263 |
+
|
264 |
+
self.mask_emb = nn.Parameter(
|
265 |
+
torch.FloatTensor(cfg.encoder_embed_dim).uniform_()
|
266 |
+
)
|
267 |
+
|
268 |
+
self.encoder = TransformerEncoder(cfg)
|
269 |
+
self.layer_norm = LayerNorm(self.embed)
|
270 |
+
|
271 |
+
def apply_mask(self, x, padding_mask):
|
272 |
+
B, T, C = x.shape
|
273 |
+
if self.mask_prob > 0:
|
274 |
+
mask_indices = compute_mask_indices(
|
275 |
+
(B, T),
|
276 |
+
padding_mask,
|
277 |
+
self.mask_prob,
|
278 |
+
self.mask_length,
|
279 |
+
self.mask_selection,
|
280 |
+
self.mask_other,
|
281 |
+
min_masks=2,
|
282 |
+
no_overlap=self.no_mask_overlap,
|
283 |
+
min_space=self.mask_min_space,
|
284 |
+
)
|
285 |
+
mask_indices = torch.from_numpy(mask_indices).to(x.device)
|
286 |
+
x[mask_indices] = self.mask_emb
|
287 |
+
else:
|
288 |
+
mask_indices = None
|
289 |
+
|
290 |
+
if self.mask_channel_prob > 0:
|
291 |
+
mask_channel_indices = compute_mask_indices(
|
292 |
+
(B, C),
|
293 |
+
None,
|
294 |
+
self.mask_channel_prob,
|
295 |
+
self.mask_channel_length,
|
296 |
+
self.mask_channel_selection,
|
297 |
+
self.mask_channel_other,
|
298 |
+
no_overlap=self.no_mask_channel_overlap,
|
299 |
+
min_space=self.mask_channel_min_space,
|
300 |
+
)
|
301 |
+
mask_channel_indices = (
|
302 |
+
torch.from_numpy(mask_channel_indices)
|
303 |
+
.to(x.device)
|
304 |
+
.unsqueeze(1)
|
305 |
+
.expand(-1, T, -1)
|
306 |
+
)
|
307 |
+
x[mask_channel_indices] = 0
|
308 |
+
|
309 |
+
return x, mask_indices
|
310 |
+
|
311 |
+
def forward_padding_mask(
|
312 |
+
self, features: torch.Tensor, padding_mask: torch.Tensor,
|
313 |
+
) -> torch.Tensor:
|
314 |
+
extra = padding_mask.size(1) % features.size(1)
|
315 |
+
if extra > 0:
|
316 |
+
padding_mask = padding_mask[:, :-extra]
|
317 |
+
padding_mask = padding_mask.view(
|
318 |
+
padding_mask.size(0), features.size(1), -1
|
319 |
+
)
|
320 |
+
padding_mask = padding_mask.all(-1)
|
321 |
+
return padding_mask
|
322 |
+
|
323 |
+
def extract_features(
|
324 |
+
self,
|
325 |
+
source: torch.Tensor,
|
326 |
+
padding_mask: Optional[torch.Tensor] = None,
|
327 |
+
mask: bool = False,
|
328 |
+
ret_conv: bool = False,
|
329 |
+
output_layer: Optional[int] = None,
|
330 |
+
ret_layer_results: bool = False,
|
331 |
+
):
|
332 |
+
|
333 |
+
|
334 |
+
with torch.no_grad():
|
335 |
+
features = self.feature_extractor(source)
|
336 |
+
|
337 |
+
cnn_outs = features
|
338 |
+
features = features[-1].transpose(1, 2)
|
339 |
+
features = self.layer_norm(features)
|
340 |
+
|
341 |
+
if padding_mask is not None:
|
342 |
+
padding_mask = self.forward_padding_mask(features, padding_mask)
|
343 |
+
|
344 |
+
if self.post_extract_proj is not None:
|
345 |
+
features = self.post_extract_proj(features)
|
346 |
+
|
347 |
+
features = self.dropout_input(features)
|
348 |
+
|
349 |
+
if mask:
|
350 |
+
x, mask_indices = self.apply_mask(
|
351 |
+
features, padding_mask
|
352 |
+
)
|
353 |
+
else:
|
354 |
+
x = features
|
355 |
+
|
356 |
+
# feature: (B, T, D), float
|
357 |
+
# target: (B, T), long
|
358 |
+
# x: (B, T, D), float
|
359 |
+
# padding_mask: (B, T), bool
|
360 |
+
# mask_indices: (B, T), bool
|
361 |
+
x, layer_results = self.encoder(
|
362 |
+
x,
|
363 |
+
padding_mask=padding_mask,
|
364 |
+
layer=None if output_layer is None else output_layer - 1
|
365 |
+
)
|
366 |
+
return cnn_outs, layer_results
|
367 |
+
# res = {"x": x, "padding_mask": padding_mask, "features": features, "layer_results": layer_results}
|
368 |
+
|
369 |
+
# feature = res["features"] if ret_conv else res["x"]
|
370 |
+
# if ret_layer_results:
|
371 |
+
# feature = (feature, res["layer_results"])
|
372 |
+
# return feature, res["padding_mask"]
|
373 |
+
|
374 |
+
|
375 |
+
class ConvFeatureExtractionModel(nn.Module):
|
376 |
+
def __init__(
|
377 |
+
self,
|
378 |
+
conv_layers: List[Tuple[int, int, int]],
|
379 |
+
dropout: float = 0.0,
|
380 |
+
mode: str = "default",
|
381 |
+
conv_bias: bool = False,
|
382 |
+
conv_type: str = "default"
|
383 |
+
):
|
384 |
+
super().__init__()
|
385 |
+
|
386 |
+
assert mode in {"default", "layer_norm"}
|
387 |
+
|
388 |
+
def block(
|
389 |
+
n_in,
|
390 |
+
n_out,
|
391 |
+
k,
|
392 |
+
stride,
|
393 |
+
is_layer_norm=False,
|
394 |
+
is_group_norm=False,
|
395 |
+
conv_bias=False,
|
396 |
+
):
|
397 |
+
def make_conv():
|
398 |
+
conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias)
|
399 |
+
nn.init.kaiming_normal_(conv.weight)
|
400 |
+
return conv
|
401 |
+
|
402 |
+
assert (
|
403 |
+
is_layer_norm and is_group_norm
|
404 |
+
) == False, "layer norm and group norm are exclusive"
|
405 |
+
|
406 |
+
if is_layer_norm:
|
407 |
+
return nn.Sequential(
|
408 |
+
make_conv(),
|
409 |
+
nn.Dropout(p=dropout),
|
410 |
+
nn.Sequential(
|
411 |
+
TransposeLast(),
|
412 |
+
Fp32LayerNorm(dim, elementwise_affine=True),
|
413 |
+
TransposeLast(),
|
414 |
+
),
|
415 |
+
nn.GELU(),
|
416 |
+
)
|
417 |
+
elif is_group_norm:
|
418 |
+
return nn.Sequential(
|
419 |
+
make_conv(),
|
420 |
+
nn.Dropout(p=dropout),
|
421 |
+
Fp32GroupNorm(dim, dim, affine=True),
|
422 |
+
nn.GELU(),
|
423 |
+
)
|
424 |
+
else:
|
425 |
+
return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU())
|
426 |
+
|
427 |
+
self.conv_type = conv_type
|
428 |
+
if self.conv_type == "default":
|
429 |
+
in_d = 1
|
430 |
+
self.conv_layers = nn.ModuleList()
|
431 |
+
for i, cl in enumerate(conv_layers):
|
432 |
+
assert len(cl) == 3, "invalid conv definition: " + str(cl)
|
433 |
+
(dim, k, stride) = cl
|
434 |
+
|
435 |
+
self.conv_layers.append(
|
436 |
+
block(
|
437 |
+
in_d,
|
438 |
+
dim,
|
439 |
+
k,
|
440 |
+
stride,
|
441 |
+
is_layer_norm=mode == "layer_norm",
|
442 |
+
is_group_norm=mode == "default" and i == 0,
|
443 |
+
conv_bias=conv_bias,
|
444 |
+
)
|
445 |
+
)
|
446 |
+
in_d = dim
|
447 |
+
elif self.conv_type == "conv2d":
|
448 |
+
in_d = 1
|
449 |
+
self.conv_layers = nn.ModuleList()
|
450 |
+
for i, cl in enumerate(conv_layers):
|
451 |
+
assert len(cl) == 3
|
452 |
+
(dim, k, stride) = cl
|
453 |
+
|
454 |
+
self.conv_layers.append(
|
455 |
+
torch.nn.Conv2d(in_d, dim, k, stride)
|
456 |
+
)
|
457 |
+
self.conv_layers.append(torch.nn.ReLU())
|
458 |
+
in_d = dim
|
459 |
+
elif self.conv_type == "custom":
|
460 |
+
in_d = 1
|
461 |
+
idim = 80
|
462 |
+
self.conv_layers = nn.ModuleList()
|
463 |
+
for i, cl in enumerate(conv_layers):
|
464 |
+
assert len(cl) == 3
|
465 |
+
(dim, k, stride) = cl
|
466 |
+
self.conv_layers.append(
|
467 |
+
torch.nn.Conv2d(in_d, dim, k, stride, padding=1)
|
468 |
+
)
|
469 |
+
self.conv_layers.append(
|
470 |
+
torch.nn.LayerNorm([dim, idim])
|
471 |
+
)
|
472 |
+
self.conv_layers.append(torch.nn.ReLU())
|
473 |
+
in_d = dim
|
474 |
+
if (i + 1) % 2 == 0:
|
475 |
+
self.conv_layers.append(
|
476 |
+
torch.nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
477 |
+
)
|
478 |
+
idim = int(math.ceil(idim / 2))
|
479 |
+
else:
|
480 |
+
pass
|
481 |
+
|
482 |
+
def forward(self, x, mask=None):
|
483 |
+
|
484 |
+
# BxT -> BxCxT
|
485 |
+
x_lst = []
|
486 |
+
x = x.unsqueeze(1)
|
487 |
+
if self.conv_type == "custom":
|
488 |
+
for conv in self.conv_layers:
|
489 |
+
if isinstance(conv, nn.LayerNorm):
|
490 |
+
x = x.transpose(1, 2)
|
491 |
+
x = conv(x).transpose(1, 2)
|
492 |
+
else:
|
493 |
+
x = conv(x)
|
494 |
+
x = x.transpose(2, 3).contiguous()
|
495 |
+
x = x.view(x.size(0), -1, x.size(-1))
|
496 |
+
else:
|
497 |
+
for conv in self.conv_layers:
|
498 |
+
x = conv(x)
|
499 |
+
x_lst.append(x)
|
500 |
+
if self.conv_type == "conv2d":
|
501 |
+
b, c, t, f = x.size()
|
502 |
+
x = x.transpose(2, 3).contiguous().view(b, c * f, t)
|
503 |
+
return x_lst
|
504 |
+
|
505 |
+
|
506 |
+
class TransformerEncoder(nn.Module):
|
507 |
+
def __init__(self, args):
|
508 |
+
super().__init__()
|
509 |
+
|
510 |
+
self.dropout = args.dropout
|
511 |
+
self.embedding_dim = args.encoder_embed_dim
|
512 |
+
|
513 |
+
self.pos_conv = nn.Conv1d(
|
514 |
+
self.embedding_dim,
|
515 |
+
self.embedding_dim,
|
516 |
+
kernel_size=args.conv_pos,
|
517 |
+
padding=args.conv_pos // 2,
|
518 |
+
groups=args.conv_pos_groups,
|
519 |
+
)
|
520 |
+
dropout = 0
|
521 |
+
std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim))
|
522 |
+
nn.init.normal_(self.pos_conv.weight, mean=0, std=std)
|
523 |
+
nn.init.constant_(self.pos_conv.bias, 0)
|
524 |
+
|
525 |
+
self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2)
|
526 |
+
self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU())
|
527 |
+
|
528 |
+
if hasattr(args, "relative_position_embedding"):
|
529 |
+
self.relative_position_embedding = args.relative_position_embedding
|
530 |
+
self.num_buckets = args.num_buckets
|
531 |
+
self.max_distance = args.max_distance
|
532 |
+
else:
|
533 |
+
self.relative_position_embedding = False
|
534 |
+
self.num_buckets = 0
|
535 |
+
self.max_distance = 0
|
536 |
+
|
537 |
+
self.layers = nn.ModuleList(
|
538 |
+
[
|
539 |
+
TransformerSentenceEncoderLayer(
|
540 |
+
embedding_dim=self.embedding_dim,
|
541 |
+
ffn_embedding_dim=args.encoder_ffn_embed_dim,
|
542 |
+
num_attention_heads=args.encoder_attention_heads,
|
543 |
+
dropout=self.dropout,
|
544 |
+
attention_dropout=args.attention_dropout,
|
545 |
+
activation_dropout=args.activation_dropout,
|
546 |
+
activation_fn=args.activation_fn,
|
547 |
+
layer_norm_first=args.layer_norm_first,
|
548 |
+
has_relative_attention_bias=(self.relative_position_embedding and i == 0),
|
549 |
+
num_buckets=self.num_buckets,
|
550 |
+
max_distance=self.max_distance,
|
551 |
+
gru_rel_pos=args.gru_rel_pos,
|
552 |
+
)
|
553 |
+
for i in range(args.encoder_layers)
|
554 |
+
]
|
555 |
+
)
|
556 |
+
|
557 |
+
self.layer_norm_first = args.layer_norm_first
|
558 |
+
self.layer_norm = LayerNorm(self.embedding_dim)
|
559 |
+
self.layerdrop = args.encoder_layerdrop
|
560 |
+
|
561 |
+
self.apply(init_bert_params)
|
562 |
+
|
563 |
+
def forward(self, x, padding_mask=None, streaming_mask=None, layer=None):
|
564 |
+
x, layer_results = self.extract_features(x, padding_mask, streaming_mask, layer)
|
565 |
+
|
566 |
+
if self.layer_norm_first and layer is None:
|
567 |
+
x = self.layer_norm(x)
|
568 |
+
|
569 |
+
return x, layer_results
|
570 |
+
|
571 |
+
def extract_features(self, x, padding_mask=None, streaming_mask=None, tgt_layer=None):
|
572 |
+
|
573 |
+
if padding_mask is not None:
|
574 |
+
x[padding_mask] = 0
|
575 |
+
|
576 |
+
x_conv = self.pos_conv(x.transpose(1, 2))
|
577 |
+
x_conv = x_conv.transpose(1, 2)
|
578 |
+
x = x + x_conv
|
579 |
+
|
580 |
+
if not self.layer_norm_first:
|
581 |
+
x = self.layer_norm(x)
|
582 |
+
|
583 |
+
x = F.dropout(x, p=self.dropout, training=self.training)
|
584 |
+
|
585 |
+
# B x T x C -> T x B x C
|
586 |
+
x = x.transpose(0, 1)
|
587 |
+
|
588 |
+
layer_results = []
|
589 |
+
z = None
|
590 |
+
if tgt_layer is not None:
|
591 |
+
layer_results.append((x, z))
|
592 |
+
r = None
|
593 |
+
pos_bias = None
|
594 |
+
for i, layer in enumerate(self.layers):
|
595 |
+
dropout_probability = np.random.random()
|
596 |
+
if not self.training or (dropout_probability > self.layerdrop):
|
597 |
+
x, z, pos_bias = layer(x, self_attn_padding_mask=padding_mask, need_weights=False,
|
598 |
+
self_attn_mask=streaming_mask, pos_bias=pos_bias)
|
599 |
+
if tgt_layer is not None:
|
600 |
+
layer_results.append((x, z))
|
601 |
+
if i == tgt_layer:
|
602 |
+
r = x
|
603 |
+
break
|
604 |
+
|
605 |
+
if r is not None:
|
606 |
+
x = r
|
607 |
+
|
608 |
+
# T x B x C -> B x T x C
|
609 |
+
x = x.transpose(0, 1)
|
610 |
+
|
611 |
+
return x, layer_results
|
612 |
+
|
613 |
+
|
614 |
+
class TransformerSentenceEncoderLayer(nn.Module):
|
615 |
+
"""
|
616 |
+
Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained
|
617 |
+
models.
|
618 |
+
"""
|
619 |
+
|
620 |
+
def __init__(
|
621 |
+
self,
|
622 |
+
embedding_dim: float = 768,
|
623 |
+
ffn_embedding_dim: float = 3072,
|
624 |
+
num_attention_heads: float = 8,
|
625 |
+
dropout: float = 0.1,
|
626 |
+
attention_dropout: float = 0.1,
|
627 |
+
activation_dropout: float = 0.1,
|
628 |
+
activation_fn: str = "relu",
|
629 |
+
layer_norm_first: bool = False,
|
630 |
+
has_relative_attention_bias: bool = False,
|
631 |
+
num_buckets: int = 0,
|
632 |
+
max_distance: int = 0,
|
633 |
+
rescale_init: bool = False,
|
634 |
+
gru_rel_pos: bool = False,
|
635 |
+
) -> None:
|
636 |
+
|
637 |
+
super().__init__()
|
638 |
+
# Initialize parameters
|
639 |
+
self.embedding_dim = embedding_dim
|
640 |
+
self.dropout = dropout
|
641 |
+
self.activation_dropout = activation_dropout
|
642 |
+
|
643 |
+
# Initialize blocks
|
644 |
+
self.activation_name = activation_fn
|
645 |
+
self.activation_fn = get_activation_fn(activation_fn)
|
646 |
+
self.self_attn = MultiheadAttention(
|
647 |
+
self.embedding_dim,
|
648 |
+
num_attention_heads,
|
649 |
+
dropout=attention_dropout,
|
650 |
+
self_attention=True,
|
651 |
+
has_relative_attention_bias=has_relative_attention_bias,
|
652 |
+
num_buckets=num_buckets,
|
653 |
+
max_distance=max_distance,
|
654 |
+
rescale_init=rescale_init,
|
655 |
+
gru_rel_pos=gru_rel_pos,
|
656 |
+
)
|
657 |
+
|
658 |
+
self.dropout1 = nn.Dropout(dropout)
|
659 |
+
self.dropout2 = nn.Dropout(self.activation_dropout)
|
660 |
+
self.dropout3 = nn.Dropout(dropout)
|
661 |
+
|
662 |
+
self.layer_norm_first = layer_norm_first
|
663 |
+
|
664 |
+
# layer norm associated with the self attention layer
|
665 |
+
self.self_attn_layer_norm = LayerNorm(self.embedding_dim)
|
666 |
+
|
667 |
+
if self.activation_name == "glu":
|
668 |
+
self.fc1 = GLU_Linear(self.embedding_dim, ffn_embedding_dim, "swish")
|
669 |
+
else:
|
670 |
+
self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
|
671 |
+
self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)
|
672 |
+
|
673 |
+
import torchaudio.functional as AudioF
|
674 |
+
|
675 |
+
|
676 |
+
# layer norm associated with the position wise feed-forward NN
|
677 |
+
self.final_layer_norm = LayerNorm(self.embedding_dim)
|
678 |
+
|
679 |
+
def forward(
|
680 |
+
self,
|
681 |
+
x: torch.Tensor,
|
682 |
+
self_attn_mask: torch.Tensor = None,
|
683 |
+
self_attn_padding_mask: torch.Tensor = None,
|
684 |
+
need_weights: bool = False,
|
685 |
+
pos_bias=None
|
686 |
+
):
|
687 |
+
"""
|
688 |
+
LayerNorm is applied either before or after the self-attention/ffn
|
689 |
+
modules similar to the original Transformer imlementation.
|
690 |
+
"""
|
691 |
+
residual = x
|
692 |
+
|
693 |
+
if self.layer_norm_first:
|
694 |
+
x = self.self_attn_layer_norm(x)
|
695 |
+
x, attn, pos_bias = self.self_attn(
|
696 |
+
query=x,
|
697 |
+
key=x,
|
698 |
+
value=x,
|
699 |
+
key_padding_mask=self_attn_padding_mask,
|
700 |
+
need_weights=False,
|
701 |
+
attn_mask=self_attn_mask,
|
702 |
+
position_bias=pos_bias
|
703 |
+
)
|
704 |
+
x = self.dropout1(x)
|
705 |
+
x = residual + x
|
706 |
+
|
707 |
+
residual = x
|
708 |
+
|
709 |
+
x = self.final_layer_norm(x)
|
710 |
+
if self.activation_name == "glu":
|
711 |
+
x = self.fc1(x)
|
712 |
+
else:
|
713 |
+
x = self.activation_fn(self.fc1(x))
|
714 |
+
x = self.dropout2(x)
|
715 |
+
x = self.fc2(x)
|
716 |
+
x = self.dropout3(x)
|
717 |
+
x = residual + x
|
718 |
+
else:
|
719 |
+
|
720 |
+
|
721 |
+
x, attn, pos_bias = self.self_attn(
|
722 |
+
query=x,
|
723 |
+
key=x,
|
724 |
+
value=x,
|
725 |
+
key_padding_mask=self_attn_padding_mask,
|
726 |
+
need_weights=need_weights,
|
727 |
+
attn_mask=self_attn_mask,
|
728 |
+
position_bias=pos_bias
|
729 |
+
)
|
730 |
+
|
731 |
+
x = self.dropout1(x)
|
732 |
+
x = residual + x
|
733 |
+
|
734 |
+
x = self.self_attn_layer_norm(x)
|
735 |
+
|
736 |
+
residual = x
|
737 |
+
if self.activation_name == "glu":
|
738 |
+
x = self.fc1(x)
|
739 |
+
else:
|
740 |
+
x = self.activation_fn(self.fc1(x))
|
741 |
+
x = self.dropout2(x)
|
742 |
+
x = self.fc2(x)
|
743 |
+
x = self.dropout3(x)
|
744 |
+
x = residual + x
|
745 |
+
|
746 |
+
|
747 |
+
x = self.final_layer_norm(x)
|
748 |
+
|
749 |
+
return x, attn, pos_bias
|
models/Baseline/modules.py
ADDED
@@ -0,0 +1,827 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing (https://arxiv.org/abs/2110.13900.pdf)
|
3 |
+
# Github source: https://github.com/microsoft/unilm/tree/master/wavlm
|
4 |
+
# Copyright (c) 2021 Microsoft
|
5 |
+
# Licensed under The MIT License [see LICENSE for details]
|
6 |
+
# Based on fairseq code bases
|
7 |
+
# https://github.com/pytorch/fairseq
|
8 |
+
# --------------------------------------------------------
|
9 |
+
|
10 |
+
import math
|
11 |
+
import warnings
|
12 |
+
from typing import Dict, Optional, Tuple
|
13 |
+
import torch
|
14 |
+
from torch import Tensor, nn
|
15 |
+
from torch.nn import Parameter
|
16 |
+
import torch.nn.functional as F
|
17 |
+
|
18 |
+
|
19 |
+
class TransposeLast(nn.Module):
|
20 |
+
def __init__(self, deconstruct_idx=None):
|
21 |
+
super().__init__()
|
22 |
+
self.deconstruct_idx = deconstruct_idx
|
23 |
+
|
24 |
+
def forward(self, x):
|
25 |
+
if self.deconstruct_idx is not None:
|
26 |
+
x = x[self.deconstruct_idx]
|
27 |
+
return x.transpose(-2, -1)
|
28 |
+
|
29 |
+
|
30 |
+
class Fp32LayerNorm(nn.LayerNorm):
|
31 |
+
def __init__(self, *args, **kwargs):
|
32 |
+
super().__init__(*args, **kwargs)
|
33 |
+
|
34 |
+
def forward(self, input):
|
35 |
+
output = F.layer_norm(
|
36 |
+
input.float(),
|
37 |
+
self.normalized_shape,
|
38 |
+
self.weight.float() if self.weight is not None else None,
|
39 |
+
self.bias.float() if self.bias is not None else None,
|
40 |
+
self.eps,
|
41 |
+
)
|
42 |
+
return output.type_as(input)
|
43 |
+
|
44 |
+
|
45 |
+
class Fp32GroupNorm(nn.GroupNorm):
|
46 |
+
def __init__(self, *args, **kwargs):
|
47 |
+
super().__init__(*args, **kwargs)
|
48 |
+
|
49 |
+
def forward(self, input):
|
50 |
+
output = F.group_norm(
|
51 |
+
input.float(),
|
52 |
+
self.num_groups,
|
53 |
+
self.weight.float() if self.weight is not None else None,
|
54 |
+
self.bias.float() if self.bias is not None else None,
|
55 |
+
self.eps,
|
56 |
+
)
|
57 |
+
return output.type_as(input)
|
58 |
+
|
59 |
+
|
60 |
+
class GradMultiply(torch.autograd.Function):
|
61 |
+
@staticmethod
|
62 |
+
def forward(ctx, x, scale):
|
63 |
+
ctx.scale = scale
|
64 |
+
res = x.new(x)
|
65 |
+
return res
|
66 |
+
|
67 |
+
@staticmethod
|
68 |
+
def backward(ctx, grad):
|
69 |
+
return grad * ctx.scale, None
|
70 |
+
|
71 |
+
|
72 |
+
class SamePad(nn.Module):
|
73 |
+
def __init__(self, kernel_size, causal=False):
|
74 |
+
super().__init__()
|
75 |
+
if causal:
|
76 |
+
self.remove = kernel_size - 1
|
77 |
+
else:
|
78 |
+
self.remove = 1 if kernel_size % 2 == 0 else 0
|
79 |
+
|
80 |
+
def forward(self, x):
|
81 |
+
if self.remove > 0:
|
82 |
+
x = x[:, :, : -self.remove]
|
83 |
+
return x
|
84 |
+
|
85 |
+
|
86 |
+
class Swish(nn.Module):
|
87 |
+
"""Swish function
|
88 |
+
"""
|
89 |
+
|
90 |
+
def __init__(self):
|
91 |
+
"""Construct an MultiHeadedAttention object."""
|
92 |
+
super(Swish, self).__init__()
|
93 |
+
self.act = torch.nn.Sigmoid()
|
94 |
+
|
95 |
+
def forward(self, x):
|
96 |
+
return x * self.act(x)
|
97 |
+
|
98 |
+
|
99 |
+
class GLU_Linear(nn.Module):
|
100 |
+
def __init__(self, input_dim, output_dim, glu_type="sigmoid", bias_in_glu=True):
|
101 |
+
super(GLU_Linear, self).__init__()
|
102 |
+
|
103 |
+
self.glu_type = glu_type
|
104 |
+
self.output_dim = output_dim
|
105 |
+
|
106 |
+
if glu_type == "sigmoid":
|
107 |
+
self.glu_act = torch.nn.Sigmoid()
|
108 |
+
elif glu_type == "swish":
|
109 |
+
self.glu_act = Swish()
|
110 |
+
elif glu_type == "relu":
|
111 |
+
self.glu_act = torch.nn.ReLU()
|
112 |
+
elif glu_type == "gelu":
|
113 |
+
self.glu_act = torch.nn.GELU()
|
114 |
+
|
115 |
+
if bias_in_glu:
|
116 |
+
self.linear = nn.Linear(input_dim, output_dim * 2, True)
|
117 |
+
else:
|
118 |
+
self.linear = nn.Linear(input_dim, output_dim * 2, False)
|
119 |
+
|
120 |
+
def forward(self, x):
|
121 |
+
# to be consistent with GLU_Linear, we assume the input always has the #channel (#dim) in the last dimension of the tensor, so need to switch the dimension first for 1D-Conv case
|
122 |
+
x = self.linear(x)
|
123 |
+
|
124 |
+
if self.glu_type == "bilinear":
|
125 |
+
x = (x[:, :, 0:self.output_dim] * x[:, :, self.output_dim:self.output_dim * 2])
|
126 |
+
else:
|
127 |
+
x = (x[:, :, 0:self.output_dim] * self.glu_act(x[:, :, self.output_dim:self.output_dim * 2]))
|
128 |
+
|
129 |
+
return x
|
130 |
+
|
131 |
+
|
132 |
+
def gelu_accurate(x):
|
133 |
+
if not hasattr(gelu_accurate, "_a"):
|
134 |
+
gelu_accurate._a = math.sqrt(2 / math.pi)
|
135 |
+
return (
|
136 |
+
0.5 * x * (1 + torch.tanh(gelu_accurate._a * (x + 0.044715 * torch.pow(x, 3))))
|
137 |
+
)
|
138 |
+
|
139 |
+
|
140 |
+
def gelu(x: torch.Tensor) -> torch.Tensor:
|
141 |
+
return torch.nn.functional.gelu(x.float()).type_as(x)
|
142 |
+
|
143 |
+
|
144 |
+
def get_activation_fn(activation: str):
|
145 |
+
"""Returns the activation function corresponding to `activation`"""
|
146 |
+
|
147 |
+
if activation == "relu":
|
148 |
+
return F.relu
|
149 |
+
elif activation == "gelu":
|
150 |
+
return gelu
|
151 |
+
elif activation == "gelu_fast":
|
152 |
+
warnings.warn(
|
153 |
+
"--activation-fn=gelu_fast has been renamed to gelu_accurate"
|
154 |
+
)
|
155 |
+
return gelu_accurate
|
156 |
+
elif activation == "gelu_accurate":
|
157 |
+
return gelu_accurate
|
158 |
+
elif activation == "tanh":
|
159 |
+
return torch.tanh
|
160 |
+
elif activation == "linear":
|
161 |
+
return lambda x: x
|
162 |
+
elif activation == "glu":
|
163 |
+
return lambda x: x
|
164 |
+
else:
|
165 |
+
raise RuntimeError("--activation-fn {} not supported".format(activation))
|
166 |
+
|
167 |
+
|
168 |
+
def init_bert_params(module):
|
169 |
+
"""
|
170 |
+
Initialize the weights specific to the BERT Model.
|
171 |
+
This overrides the default initializations depending on the specified arguments.
|
172 |
+
1. If normal_init_linear_weights is set then weights of linear
|
173 |
+
layer will be initialized using the normal distribution and
|
174 |
+
bais will be set to the specified value.
|
175 |
+
2. If normal_init_embed_weights is set then weights of embedding
|
176 |
+
layer will be initialized using the normal distribution.
|
177 |
+
3. If normal_init_proj_weights is set then weights of
|
178 |
+
in_project_weight for MultiHeadAttention initialized using
|
179 |
+
the normal distribution (to be validated).
|
180 |
+
"""
|
181 |
+
|
182 |
+
def normal_(data):
|
183 |
+
# with FSDP, module params will be on CUDA, so we cast them back to CPU
|
184 |
+
# so that the RNG is consistent with and without FSDP
|
185 |
+
data.copy_(
|
186 |
+
data.cpu().normal_(mean=0.0, std=0.02).to(data.device)
|
187 |
+
)
|
188 |
+
|
189 |
+
if isinstance(module, nn.Linear):
|
190 |
+
normal_(module.weight.data)
|
191 |
+
if module.bias is not None:
|
192 |
+
module.bias.data.zero_()
|
193 |
+
if isinstance(module, nn.Embedding):
|
194 |
+
normal_(module.weight.data)
|
195 |
+
if module.padding_idx is not None:
|
196 |
+
module.weight.data[module.padding_idx].zero_()
|
197 |
+
if isinstance(module, MultiheadAttention):
|
198 |
+
normal_(module.q_proj.weight.data)
|
199 |
+
normal_(module.k_proj.weight.data)
|
200 |
+
normal_(module.v_proj.weight.data)
|
201 |
+
|
202 |
+
|
203 |
+
def quant_noise(module, p, block_size):
|
204 |
+
"""
|
205 |
+
Wraps modules and applies quantization noise to the weights for
|
206 |
+
subsequent quantization with Iterative Product Quantization as
|
207 |
+
described in "Training with Quantization Noise for Extreme Model Compression"
|
208 |
+
|
209 |
+
Args:
|
210 |
+
- module: nn.Module
|
211 |
+
- p: amount of Quantization Noise
|
212 |
+
- block_size: size of the blocks for subsequent quantization with iPQ
|
213 |
+
|
214 |
+
Remarks:
|
215 |
+
- Module weights must have the right sizes wrt the block size
|
216 |
+
- Only Linear, Embedding and Conv2d modules are supported for the moment
|
217 |
+
- For more detail on how to quantize by blocks with convolutional weights,
|
218 |
+
see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks"
|
219 |
+
- We implement the simplest form of noise here as stated in the paper
|
220 |
+
which consists in randomly dropping blocks
|
221 |
+
"""
|
222 |
+
|
223 |
+
# if no quantization noise, don't register hook
|
224 |
+
if p <= 0:
|
225 |
+
return module
|
226 |
+
|
227 |
+
# supported modules
|
228 |
+
assert isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d))
|
229 |
+
|
230 |
+
# test whether module.weight has the right sizes wrt block_size
|
231 |
+
is_conv = module.weight.ndim == 4
|
232 |
+
|
233 |
+
# 2D matrix
|
234 |
+
if not is_conv:
|
235 |
+
assert (
|
236 |
+
module.weight.size(1) % block_size == 0
|
237 |
+
), "Input features must be a multiple of block sizes"
|
238 |
+
|
239 |
+
# 4D matrix
|
240 |
+
else:
|
241 |
+
# 1x1 convolutions
|
242 |
+
if module.kernel_size == (1, 1):
|
243 |
+
assert (
|
244 |
+
module.in_channels % block_size == 0
|
245 |
+
), "Input channels must be a multiple of block sizes"
|
246 |
+
# regular convolutions
|
247 |
+
else:
|
248 |
+
k = module.kernel_size[0] * module.kernel_size[1]
|
249 |
+
assert k % block_size == 0, "Kernel size must be a multiple of block size"
|
250 |
+
|
251 |
+
def _forward_pre_hook(mod, input):
|
252 |
+
# no noise for evaluation
|
253 |
+
if mod.training:
|
254 |
+
if not is_conv:
|
255 |
+
# gather weight and sizes
|
256 |
+
weight = mod.weight
|
257 |
+
in_features = weight.size(1)
|
258 |
+
out_features = weight.size(0)
|
259 |
+
|
260 |
+
# split weight matrix into blocks and randomly drop selected blocks
|
261 |
+
mask = torch.zeros(
|
262 |
+
in_features // block_size * out_features, device=weight.device
|
263 |
+
)
|
264 |
+
mask.bernoulli_(p)
|
265 |
+
mask = mask.repeat_interleave(block_size, -1).view(-1, in_features)
|
266 |
+
|
267 |
+
else:
|
268 |
+
# gather weight and sizes
|
269 |
+
weight = mod.weight
|
270 |
+
in_channels = mod.in_channels
|
271 |
+
out_channels = mod.out_channels
|
272 |
+
|
273 |
+
# split weight matrix into blocks and randomly drop selected blocks
|
274 |
+
if mod.kernel_size == (1, 1):
|
275 |
+
mask = torch.zeros(
|
276 |
+
int(in_channels // block_size * out_channels),
|
277 |
+
device=weight.device,
|
278 |
+
)
|
279 |
+
mask.bernoulli_(p)
|
280 |
+
mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels)
|
281 |
+
else:
|
282 |
+
mask = torch.zeros(
|
283 |
+
weight.size(0), weight.size(1), device=weight.device
|
284 |
+
)
|
285 |
+
mask.bernoulli_(p)
|
286 |
+
mask = (
|
287 |
+
mask.unsqueeze(2)
|
288 |
+
.unsqueeze(3)
|
289 |
+
.repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1])
|
290 |
+
)
|
291 |
+
|
292 |
+
# scale weights and apply mask
|
293 |
+
mask = mask.to(
|
294 |
+
torch.bool
|
295 |
+
) # x.bool() is not currently supported in TorchScript
|
296 |
+
s = 1 / (1 - p)
|
297 |
+
mod.weight.data = s * weight.masked_fill(mask, 0)
|
298 |
+
|
299 |
+
module.register_forward_pre_hook(_forward_pre_hook)
|
300 |
+
return module
|
301 |
+
|
302 |
+
|
303 |
+
class MultiheadAttention(nn.Module):
|
304 |
+
"""Multi-headed attention.
|
305 |
+
|
306 |
+
See "Attention Is All You Need" for more details.
|
307 |
+
"""
|
308 |
+
|
309 |
+
def __init__(
|
310 |
+
self,
|
311 |
+
embed_dim,
|
312 |
+
num_heads,
|
313 |
+
kdim=None,
|
314 |
+
vdim=None,
|
315 |
+
dropout=0.0,
|
316 |
+
bias=True,
|
317 |
+
add_bias_kv=False,
|
318 |
+
add_zero_attn=False,
|
319 |
+
self_attention=False,
|
320 |
+
encoder_decoder_attention=False,
|
321 |
+
q_noise=0.0,
|
322 |
+
qn_block_size=8,
|
323 |
+
has_relative_attention_bias=False,
|
324 |
+
num_buckets=32,
|
325 |
+
max_distance=128,
|
326 |
+
gru_rel_pos=False,
|
327 |
+
rescale_init=False,
|
328 |
+
):
|
329 |
+
super().__init__()
|
330 |
+
self.embed_dim = embed_dim
|
331 |
+
self.kdim = kdim if kdim is not None else embed_dim
|
332 |
+
self.vdim = vdim if vdim is not None else embed_dim
|
333 |
+
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
334 |
+
|
335 |
+
self.num_heads = num_heads
|
336 |
+
self.dropout_module = nn.Dropout(dropout)
|
337 |
+
|
338 |
+
self.has_relative_attention_bias = has_relative_attention_bias
|
339 |
+
self.num_buckets = num_buckets
|
340 |
+
self.max_distance = max_distance
|
341 |
+
if self.has_relative_attention_bias:
|
342 |
+
self.relative_attention_bias = nn.Embedding(num_buckets, num_heads)
|
343 |
+
|
344 |
+
self.head_dim = embed_dim // num_heads
|
345 |
+
self.q_head_dim = self.head_dim
|
346 |
+
self.k_head_dim = self.head_dim
|
347 |
+
assert (
|
348 |
+
self.head_dim * num_heads == self.embed_dim
|
349 |
+
), "embed_dim must be divisible by num_heads"
|
350 |
+
self.scaling = self.head_dim ** -0.5
|
351 |
+
|
352 |
+
self.self_attention = self_attention
|
353 |
+
self.encoder_decoder_attention = encoder_decoder_attention
|
354 |
+
|
355 |
+
assert not self.self_attention or self.qkv_same_dim, (
|
356 |
+
"Self-attention requires query, key and " "value to be of the same size"
|
357 |
+
)
|
358 |
+
|
359 |
+
k_bias = True
|
360 |
+
if rescale_init:
|
361 |
+
k_bias = False
|
362 |
+
|
363 |
+
k_embed_dim = embed_dim
|
364 |
+
q_embed_dim = embed_dim
|
365 |
+
|
366 |
+
self.k_proj = quant_noise(
|
367 |
+
nn.Linear(self.kdim, k_embed_dim, bias=k_bias), q_noise, qn_block_size
|
368 |
+
)
|
369 |
+
self.v_proj = quant_noise(
|
370 |
+
nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size
|
371 |
+
)
|
372 |
+
self.q_proj = quant_noise(
|
373 |
+
nn.Linear(embed_dim, q_embed_dim, bias=bias), q_noise, qn_block_size
|
374 |
+
)
|
375 |
+
|
376 |
+
self.out_proj = quant_noise(
|
377 |
+
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
|
378 |
+
)
|
379 |
+
|
380 |
+
if add_bias_kv:
|
381 |
+
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim))
|
382 |
+
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim))
|
383 |
+
else:
|
384 |
+
self.bias_k = self.bias_v = None
|
385 |
+
|
386 |
+
self.add_zero_attn = add_zero_attn
|
387 |
+
|
388 |
+
self.gru_rel_pos = gru_rel_pos
|
389 |
+
if self.gru_rel_pos:
|
390 |
+
self.grep_linear = nn.Linear(self.q_head_dim, 8)
|
391 |
+
self.grep_a = nn.Parameter(torch.ones(1, num_heads, 1, 1))
|
392 |
+
|
393 |
+
self.reset_parameters()
|
394 |
+
|
395 |
+
def reset_parameters(self):
|
396 |
+
if self.qkv_same_dim:
|
397 |
+
# Empirically observed the convergence to be much better with
|
398 |
+
# the scaled initialization
|
399 |
+
nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
|
400 |
+
nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
|
401 |
+
nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
|
402 |
+
else:
|
403 |
+
nn.init.xavier_uniform_(self.k_proj.weight)
|
404 |
+
nn.init.xavier_uniform_(self.v_proj.weight)
|
405 |
+
nn.init.xavier_uniform_(self.q_proj.weight)
|
406 |
+
|
407 |
+
nn.init.xavier_uniform_(self.out_proj.weight)
|
408 |
+
if self.out_proj.bias is not None:
|
409 |
+
nn.init.constant_(self.out_proj.bias, 0.0)
|
410 |
+
if self.bias_k is not None:
|
411 |
+
nn.init.xavier_normal_(self.bias_k)
|
412 |
+
if self.bias_v is not None:
|
413 |
+
nn.init.xavier_normal_(self.bias_v)
|
414 |
+
if self.has_relative_attention_bias:
|
415 |
+
nn.init.xavier_normal_(self.relative_attention_bias.weight)
|
416 |
+
|
417 |
+
def _relative_positions_bucket(self, relative_positions, bidirectional=True):
|
418 |
+
num_buckets = self.num_buckets
|
419 |
+
max_distance = self.max_distance
|
420 |
+
relative_buckets = 0
|
421 |
+
|
422 |
+
if bidirectional:
|
423 |
+
num_buckets = num_buckets // 2
|
424 |
+
relative_buckets += (relative_positions > 0).to(torch.long) * num_buckets
|
425 |
+
relative_positions = torch.abs(relative_positions)
|
426 |
+
else:
|
427 |
+
relative_positions = -torch.min(relative_positions, torch.zeros_like(relative_positions))
|
428 |
+
|
429 |
+
max_exact = num_buckets // 2
|
430 |
+
is_small = relative_positions < max_exact
|
431 |
+
|
432 |
+
relative_postion_if_large = max_exact + (
|
433 |
+
torch.log(relative_positions.float() / max_exact)
|
434 |
+
/ math.log(max_distance / max_exact)
|
435 |
+
* (num_buckets - max_exact)
|
436 |
+
).to(torch.long)
|
437 |
+
relative_postion_if_large = torch.min(
|
438 |
+
relative_postion_if_large, torch.full_like(relative_postion_if_large, num_buckets - 1)
|
439 |
+
)
|
440 |
+
|
441 |
+
relative_buckets += torch.where(is_small, relative_positions, relative_postion_if_large)
|
442 |
+
return relative_buckets
|
443 |
+
|
444 |
+
def compute_bias(self, query_length, key_length):
|
445 |
+
context_position = torch.arange(query_length, dtype=torch.long)[:, None]
|
446 |
+
memory_position = torch.arange(key_length, dtype=torch.long)[None, :]
|
447 |
+
relative_position = memory_position - context_position
|
448 |
+
relative_position_bucket = self._relative_positions_bucket(
|
449 |
+
relative_position,
|
450 |
+
bidirectional=True
|
451 |
+
)
|
452 |
+
relative_position_bucket = relative_position_bucket.to(self.relative_attention_bias.weight.device)
|
453 |
+
values = self.relative_attention_bias(relative_position_bucket)
|
454 |
+
values = values.permute([2, 0, 1])
|
455 |
+
return values
|
456 |
+
|
457 |
+
def forward(
|
458 |
+
self,
|
459 |
+
query,
|
460 |
+
key: Optional[Tensor],
|
461 |
+
value: Optional[Tensor],
|
462 |
+
key_padding_mask: Optional[Tensor] = None,
|
463 |
+
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
|
464 |
+
need_weights: bool = True,
|
465 |
+
static_kv: bool = False,
|
466 |
+
attn_mask: Optional[Tensor] = None,
|
467 |
+
before_softmax: bool = False,
|
468 |
+
need_head_weights: bool = False,
|
469 |
+
position_bias: Optional[Tensor] = None
|
470 |
+
) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]:
|
471 |
+
"""Input shape: Time x Batch x Channel
|
472 |
+
|
473 |
+
Args:
|
474 |
+
key_padding_mask (ByteTensor, optional): mask to exclude
|
475 |
+
keys that are pads, of shape `(batch, src_len)`, where
|
476 |
+
padding elements are indicated by 1s.
|
477 |
+
need_weights (bool, optional): return the attention weights,
|
478 |
+
averaged over heads (default: False).
|
479 |
+
attn_mask (ByteTensor, optional): typically used to
|
480 |
+
implement causal attention, where the mask prevents the
|
481 |
+
attention from looking forward in time (default: None).
|
482 |
+
before_softmax (bool, optional): return the raw attention
|
483 |
+
weights and values before the attention softmax.
|
484 |
+
need_head_weights (bool, optional): return the attention
|
485 |
+
weights for each head. Implies *need_weights*. Default:
|
486 |
+
return the average attention weights over all heads.
|
487 |
+
"""
|
488 |
+
if need_head_weights:
|
489 |
+
need_weights = True
|
490 |
+
|
491 |
+
is_tpu = query.device.type == "xla"
|
492 |
+
|
493 |
+
tgt_len, bsz, embed_dim = query.size()
|
494 |
+
src_len = tgt_len
|
495 |
+
assert embed_dim == self.embed_dim
|
496 |
+
assert list(query.size()) == [tgt_len, bsz, embed_dim]
|
497 |
+
if key is not None:
|
498 |
+
src_len, key_bsz, _ = key.size()
|
499 |
+
if not torch.jit.is_scripting():
|
500 |
+
assert key_bsz == bsz
|
501 |
+
assert value is not None
|
502 |
+
assert src_len, bsz == value.shape[:2]
|
503 |
+
|
504 |
+
if self.has_relative_attention_bias and position_bias is None:
|
505 |
+
position_bias = self.compute_bias(tgt_len, src_len)
|
506 |
+
position_bias = position_bias.unsqueeze(0).repeat(bsz, 1, 1, 1).view(bsz * self.num_heads, tgt_len, src_len)
|
507 |
+
|
508 |
+
if (
|
509 |
+
not is_tpu # don't use PyTorch version on TPUs
|
510 |
+
and incremental_state is None
|
511 |
+
and not static_kv
|
512 |
+
# A workaround for quantization to work. Otherwise JIT compilation
|
513 |
+
# treats bias in linear module as method.
|
514 |
+
and not torch.jit.is_scripting()
|
515 |
+
and self.q_head_dim == self.head_dim
|
516 |
+
):
|
517 |
+
assert key is not None and value is not None
|
518 |
+
assert attn_mask is None
|
519 |
+
|
520 |
+
attn_mask_rel_pos = None
|
521 |
+
if position_bias is not None:
|
522 |
+
attn_mask_rel_pos = position_bias
|
523 |
+
if self.gru_rel_pos:
|
524 |
+
query_layer = query.transpose(0, 1)
|
525 |
+
new_x_shape = query_layer.size()[:-1] + (self.num_heads, -1)
|
526 |
+
query_layer = query_layer.view(*new_x_shape)
|
527 |
+
query_layer = query_layer.permute(0, 2, 1, 3)
|
528 |
+
_B, _H, _L, __ = query_layer.size()
|
529 |
+
|
530 |
+
gate_a, gate_b = torch.sigmoid(self.grep_linear(query_layer).view(
|
531 |
+
_B, _H, _L, 2, 4).sum(-1, keepdim=False)).chunk(2, dim=-1)
|
532 |
+
gate_a_1 = gate_a * (gate_b * self.grep_a - 1.0) + 2.0
|
533 |
+
attn_mask_rel_pos = gate_a_1.view(bsz * self.num_heads, -1, 1) * position_bias
|
534 |
+
|
535 |
+
attn_mask_rel_pos = attn_mask_rel_pos.view((-1, tgt_len, tgt_len))
|
536 |
+
k_proj_bias = self.k_proj.bias
|
537 |
+
if k_proj_bias is None:
|
538 |
+
k_proj_bias = torch.zeros_like(self.q_proj.bias)
|
539 |
+
|
540 |
+
x, attn = F.multi_head_attention_forward(
|
541 |
+
query,
|
542 |
+
key,
|
543 |
+
value,
|
544 |
+
self.embed_dim,
|
545 |
+
self.num_heads,
|
546 |
+
torch.empty([0]),
|
547 |
+
torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)),
|
548 |
+
self.bias_k,
|
549 |
+
self.bias_v,
|
550 |
+
self.add_zero_attn,
|
551 |
+
self.dropout_module.p,
|
552 |
+
self.out_proj.weight,
|
553 |
+
self.out_proj.bias,
|
554 |
+
self.training,
|
555 |
+
# self.training or self.dropout_module.apply_during_inference,
|
556 |
+
key_padding_mask,
|
557 |
+
need_weights,
|
558 |
+
attn_mask_rel_pos,
|
559 |
+
use_separate_proj_weight=True,
|
560 |
+
q_proj_weight=self.q_proj.weight,
|
561 |
+
k_proj_weight=self.k_proj.weight,
|
562 |
+
v_proj_weight=self.v_proj.weight,
|
563 |
+
)
|
564 |
+
return x, attn, position_bias
|
565 |
+
|
566 |
+
if incremental_state is not None:
|
567 |
+
saved_state = self._get_input_buffer(incremental_state)
|
568 |
+
if saved_state is not None and "prev_key" in saved_state:
|
569 |
+
# previous time steps are cached - no need to recompute
|
570 |
+
# key and value if they are static
|
571 |
+
if static_kv:
|
572 |
+
assert self.encoder_decoder_attention and not self.self_attention
|
573 |
+
key = value = None
|
574 |
+
else:
|
575 |
+
saved_state = None
|
576 |
+
|
577 |
+
if self.self_attention:
|
578 |
+
q = self.q_proj(query)
|
579 |
+
k = self.k_proj(query)
|
580 |
+
v = self.v_proj(query)
|
581 |
+
elif self.encoder_decoder_attention:
|
582 |
+
# encoder-decoder attention
|
583 |
+
q = self.q_proj(query)
|
584 |
+
if key is None:
|
585 |
+
assert value is None
|
586 |
+
k = v = None
|
587 |
+
else:
|
588 |
+
k = self.k_proj(key)
|
589 |
+
v = self.v_proj(key)
|
590 |
+
|
591 |
+
else:
|
592 |
+
assert key is not None and value is not None
|
593 |
+
q = self.q_proj(query)
|
594 |
+
k = self.k_proj(key)
|
595 |
+
v = self.v_proj(value)
|
596 |
+
q *= self.scaling
|
597 |
+
|
598 |
+
if self.bias_k is not None:
|
599 |
+
assert self.bias_v is not None
|
600 |
+
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
|
601 |
+
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
|
602 |
+
if attn_mask is not None:
|
603 |
+
attn_mask = torch.cat(
|
604 |
+
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
|
605 |
+
)
|
606 |
+
if key_padding_mask is not None:
|
607 |
+
key_padding_mask = torch.cat(
|
608 |
+
[
|
609 |
+
key_padding_mask,
|
610 |
+
key_padding_mask.new_zeros(key_padding_mask.size(0), 1),
|
611 |
+
],
|
612 |
+
dim=1,
|
613 |
+
)
|
614 |
+
|
615 |
+
q = (
|
616 |
+
q.contiguous()
|
617 |
+
.view(tgt_len, bsz * self.num_heads, self.q_head_dim)
|
618 |
+
.transpose(0, 1)
|
619 |
+
)
|
620 |
+
if k is not None:
|
621 |
+
k = (
|
622 |
+
k.contiguous()
|
623 |
+
.view(-1, bsz * self.num_heads, self.k_head_dim)
|
624 |
+
.transpose(0, 1)
|
625 |
+
)
|
626 |
+
if v is not None:
|
627 |
+
v = (
|
628 |
+
v.contiguous()
|
629 |
+
.view(-1, bsz * self.num_heads, self.head_dim)
|
630 |
+
.transpose(0, 1)
|
631 |
+
)
|
632 |
+
|
633 |
+
if saved_state is not None:
|
634 |
+
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
|
635 |
+
if "prev_key" in saved_state:
|
636 |
+
_prev_key = saved_state["prev_key"]
|
637 |
+
assert _prev_key is not None
|
638 |
+
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim)
|
639 |
+
if static_kv:
|
640 |
+
k = prev_key
|
641 |
+
else:
|
642 |
+
assert k is not None
|
643 |
+
k = torch.cat([prev_key, k], dim=1)
|
644 |
+
src_len = k.size(1)
|
645 |
+
if "prev_value" in saved_state:
|
646 |
+
_prev_value = saved_state["prev_value"]
|
647 |
+
assert _prev_value is not None
|
648 |
+
prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim)
|
649 |
+
if static_kv:
|
650 |
+
v = prev_value
|
651 |
+
else:
|
652 |
+
assert v is not None
|
653 |
+
v = torch.cat([prev_value, v], dim=1)
|
654 |
+
prev_key_padding_mask: Optional[Tensor] = None
|
655 |
+
if "prev_key_padding_mask" in saved_state:
|
656 |
+
prev_key_padding_mask = saved_state["prev_key_padding_mask"]
|
657 |
+
assert k is not None and v is not None
|
658 |
+
key_padding_mask = MultiheadAttention._append_prev_key_padding_mask(
|
659 |
+
key_padding_mask=key_padding_mask,
|
660 |
+
prev_key_padding_mask=prev_key_padding_mask,
|
661 |
+
batch_size=bsz,
|
662 |
+
src_len=k.size(1),
|
663 |
+
static_kv=static_kv,
|
664 |
+
)
|
665 |
+
|
666 |
+
saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim)
|
667 |
+
saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim)
|
668 |
+
saved_state["prev_key_padding_mask"] = key_padding_mask
|
669 |
+
# In this branch incremental_state is never None
|
670 |
+
assert incremental_state is not None
|
671 |
+
incremental_state = self._set_input_buffer(incremental_state, saved_state)
|
672 |
+
assert k is not None
|
673 |
+
assert k.size(1) == src_len
|
674 |
+
|
675 |
+
# This is part of a workaround to get around fork/join parallelism
|
676 |
+
# not supporting Optional types.
|
677 |
+
if key_padding_mask is not None and key_padding_mask.dim() == 0:
|
678 |
+
key_padding_mask = None
|
679 |
+
|
680 |
+
if key_padding_mask is not None:
|
681 |
+
assert key_padding_mask.size(0) == bsz
|
682 |
+
assert key_padding_mask.size(1) == src_len
|
683 |
+
|
684 |
+
if self.add_zero_attn:
|
685 |
+
assert v is not None
|
686 |
+
src_len += 1
|
687 |
+
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1)
|
688 |
+
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1)
|
689 |
+
if attn_mask is not None:
|
690 |
+
attn_mask = torch.cat(
|
691 |
+
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
|
692 |
+
)
|
693 |
+
if key_padding_mask is not None:
|
694 |
+
key_padding_mask = torch.cat(
|
695 |
+
[
|
696 |
+
key_padding_mask,
|
697 |
+
torch.zeros(key_padding_mask.size(0), 1).type_as(
|
698 |
+
key_padding_mask
|
699 |
+
),
|
700 |
+
],
|
701 |
+
dim=1,
|
702 |
+
)
|
703 |
+
|
704 |
+
attn_weights = torch.bmm(q, k.transpose(1, 2))
|
705 |
+
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
|
706 |
+
|
707 |
+
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
|
708 |
+
|
709 |
+
if attn_mask is not None:
|
710 |
+
attn_mask = attn_mask.unsqueeze(0)
|
711 |
+
attn_weights += attn_mask
|
712 |
+
|
713 |
+
if key_padding_mask is not None:
|
714 |
+
# don't attend to padding symbols
|
715 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
716 |
+
if not is_tpu:
|
717 |
+
attn_weights = attn_weights.masked_fill(
|
718 |
+
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
|
719 |
+
float("-inf"),
|
720 |
+
)
|
721 |
+
else:
|
722 |
+
attn_weights = attn_weights.transpose(0, 2)
|
723 |
+
attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf"))
|
724 |
+
attn_weights = attn_weights.transpose(0, 2)
|
725 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
726 |
+
|
727 |
+
if before_softmax:
|
728 |
+
return attn_weights, v, position_bias
|
729 |
+
|
730 |
+
if position_bias is not None:
|
731 |
+
if self.gru_rel_pos == 1:
|
732 |
+
query_layer = q.view(bsz, self.num_heads, tgt_len, self.q_head_dim)
|
733 |
+
_B, _H, _L, __ = query_layer.size()
|
734 |
+
gate_a, gate_b = torch.sigmoid(self.grep_linear(query_layer).view(
|
735 |
+
_B, _H, _L, 2, 4).sum(-1, keepdim=False)).chunk(2, dim=-1)
|
736 |
+
gate_a_1 = gate_a * (gate_b * self.grep_a - 1.0) + 2.0
|
737 |
+
position_bias = gate_a_1.view(bsz * self.num_heads, -1, 1) * position_bias
|
738 |
+
|
739 |
+
position_bias = position_bias.view(attn_weights.size())
|
740 |
+
|
741 |
+
attn_weights = attn_weights + position_bias
|
742 |
+
|
743 |
+
attn_weights_float = F.softmax(
|
744 |
+
attn_weights, dim=-1
|
745 |
+
)
|
746 |
+
attn_weights = attn_weights_float.type_as(attn_weights)
|
747 |
+
attn_probs = self.dropout_module(attn_weights)
|
748 |
+
|
749 |
+
assert v is not None
|
750 |
+
attn = torch.bmm(attn_probs, v)
|
751 |
+
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
|
752 |
+
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
753 |
+
attn = self.out_proj(attn)
|
754 |
+
attn_weights: Optional[Tensor] = None
|
755 |
+
if need_weights:
|
756 |
+
attn_weights = attn_weights_float.view(
|
757 |
+
bsz, self.num_heads, tgt_len, src_len
|
758 |
+
).transpose(1, 0)
|
759 |
+
if not need_head_weights:
|
760 |
+
# average attention weights over heads
|
761 |
+
attn_weights = attn_weights.mean(dim=0)
|
762 |
+
|
763 |
+
return attn, attn_weights, position_bias
|
764 |
+
|
765 |
+
@staticmethod
|
766 |
+
def _append_prev_key_padding_mask(
|
767 |
+
key_padding_mask: Optional[Tensor],
|
768 |
+
prev_key_padding_mask: Optional[Tensor],
|
769 |
+
batch_size: int,
|
770 |
+
src_len: int,
|
771 |
+
static_kv: bool,
|
772 |
+
) -> Optional[Tensor]:
|
773 |
+
# saved key padding masks have shape (bsz, seq_len)
|
774 |
+
if prev_key_padding_mask is not None and static_kv:
|
775 |
+
new_key_padding_mask = prev_key_padding_mask
|
776 |
+
elif prev_key_padding_mask is not None and key_padding_mask is not None:
|
777 |
+
new_key_padding_mask = torch.cat(
|
778 |
+
[prev_key_padding_mask.float(), key_padding_mask.float()], dim=1
|
779 |
+
)
|
780 |
+
# During incremental decoding, as the padding token enters and
|
781 |
+
# leaves the frame, there will be a time when prev or current
|
782 |
+
# is None
|
783 |
+
elif prev_key_padding_mask is not None:
|
784 |
+
if src_len > prev_key_padding_mask.size(1):
|
785 |
+
filler = torch.zeros(
|
786 |
+
(batch_size, src_len - prev_key_padding_mask.size(1)),
|
787 |
+
device=prev_key_padding_mask.device,
|
788 |
+
)
|
789 |
+
new_key_padding_mask = torch.cat(
|
790 |
+
[prev_key_padding_mask.float(), filler.float()], dim=1
|
791 |
+
)
|
792 |
+
else:
|
793 |
+
new_key_padding_mask = prev_key_padding_mask.float()
|
794 |
+
elif key_padding_mask is not None:
|
795 |
+
if src_len > key_padding_mask.size(1):
|
796 |
+
filler = torch.zeros(
|
797 |
+
(batch_size, src_len - key_padding_mask.size(1)),
|
798 |
+
device=key_padding_mask.device,
|
799 |
+
)
|
800 |
+
new_key_padding_mask = torch.cat(
|
801 |
+
[filler.float(), key_padding_mask.float()], dim=1
|
802 |
+
)
|
803 |
+
else:
|
804 |
+
new_key_padding_mask = key_padding_mask.float()
|
805 |
+
else:
|
806 |
+
new_key_padding_mask = prev_key_padding_mask
|
807 |
+
return new_key_padding_mask
|
808 |
+
|
809 |
+
def _get_input_buffer(
|
810 |
+
self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]
|
811 |
+
) -> Dict[str, Optional[Tensor]]:
|
812 |
+
result = self.get_incremental_state(incremental_state, "attn_state")
|
813 |
+
if result is not None:
|
814 |
+
return result
|
815 |
+
else:
|
816 |
+
empty_result: Dict[str, Optional[Tensor]] = {}
|
817 |
+
return empty_result
|
818 |
+
|
819 |
+
def _set_input_buffer(
|
820 |
+
self,
|
821 |
+
incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
|
822 |
+
buffer: Dict[str, Optional[Tensor]],
|
823 |
+
):
|
824 |
+
return self.set_incremental_state(incremental_state, "attn_state", buffer)
|
825 |
+
|
826 |
+
def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int):
|
827 |
+
return attn_weights
|
optimizer/adamw.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! /usr/bin/python
|
2 |
+
# -*- encoding: utf-8 -*-
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
def Optimizer(parameters, lr, **kwargs):
|
7 |
+
|
8 |
+
print('Initialised Adam optimizer')
|
9 |
+
|
10 |
+
return torch.optim.AdamW(parameters, lr = lr);
|
pseudo_labeling.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import argparse
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from cuml.cluster import KMeans
|
7 |
+
|
8 |
+
# from sklearn.cluster import KMeans
|
9 |
+
from sklearn.cluster import AgglomerativeClustering
|
10 |
+
|
11 |
+
from sklearn.metrics import normalized_mutual_info_score
|
12 |
+
|
13 |
+
|
14 |
+
def main(args):
|
15 |
+
# Load embeddings
|
16 |
+
embeddings_file = torch.load(args.embeddings_file)
|
17 |
+
files = list(embeddings_file.keys())
|
18 |
+
labels = [file.split('/')[-3] for file in files]
|
19 |
+
embeddings = torch.cat(list(embeddings_file.values())).numpy()
|
20 |
+
print(f"Embedding shape: {embeddings.shape}")
|
21 |
+
|
22 |
+
# K-Means
|
23 |
+
print("KMeans...")
|
24 |
+
kmeans_start_time = time.time()
|
25 |
+
kmeans = KMeans(
|
26 |
+
n_clusters=args.n_clusters,
|
27 |
+
random_state=0,
|
28 |
+
max_samples_per_batch=1000000,
|
29 |
+
verbose=True
|
30 |
+
).fit(embeddings)
|
31 |
+
pseudo_labels = kmeans.labels_
|
32 |
+
centroids = kmeans.cluster_centers_
|
33 |
+
print(f"K-Means duration: {(time.time() - kmeans_start_time)/60:.2f} min")
|
34 |
+
|
35 |
+
# AHC
|
36 |
+
if args.n_clusters_ahc > 0:
|
37 |
+
print("AHC...")
|
38 |
+
ahc_start_time = time.time()
|
39 |
+
ahc_labels = AgglomerativeClustering(
|
40 |
+
n_clusters=args.n_clusters_ahc
|
41 |
+
).fit_predict(centroids)
|
42 |
+
pseudo_labels = [ahc_labels[pl] for pl in pseudo_labels]
|
43 |
+
print(f"AHC duration: {(time.time() - ahc_start_time)/60:.2f} min")
|
44 |
+
|
45 |
+
# Print NMI
|
46 |
+
nmi_score = normalized_mutual_info_score(labels, pseudo_labels)
|
47 |
+
print(f"NMI: {nmi_score}")
|
48 |
+
|
49 |
+
# Export pseudo labels
|
50 |
+
with open(args.output_file, 'w') as f:
|
51 |
+
for file, pseudo_label in zip(files, pseudo_labels):
|
52 |
+
f.write(f"{pseudo_label} {file}\n")
|
53 |
+
|
54 |
+
|
55 |
+
if __name__ == "__main__":
|
56 |
+
parser = argparse.ArgumentParser()
|
57 |
+
parser.add_argument(
|
58 |
+
'embeddings_file',
|
59 |
+
help='Path to embeddings file (.pt).'
|
60 |
+
)
|
61 |
+
parser.add_argument(
|
62 |
+
'output_file',
|
63 |
+
help='Path to output file (.txt).'
|
64 |
+
)
|
65 |
+
parser.add_argument(
|
66 |
+
'--n_clusters',
|
67 |
+
help='Number of clusters for KMeans.',
|
68 |
+
type=int,
|
69 |
+
default=50000
|
70 |
+
)
|
71 |
+
parser.add_argument(
|
72 |
+
'--n_clusters_ahc',
|
73 |
+
help='Number of clusters for Agglomerative Clustering.',
|
74 |
+
type=int,
|
75 |
+
default=7500
|
76 |
+
)
|
77 |
+
args = parser.parse_args()
|
78 |
+
|
79 |
+
main(args)
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=1.7.0
|
2 |
+
torchaudio>=0.7.0
|
3 |
+
numpy
|
4 |
+
scipy
|
5 |
+
scikit-learn
|
6 |
+
pyyaml
|
7 |
+
soundfile
|
8 |
+
|
9 |
+
--extra-index-url https://pypi.nvidia.com
|
10 |
+
cuml-cu12==24.8.*
|
scheduler/steplr.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! /usr/bin/python
|
2 |
+
# -*- encoding: utf-8 -*-
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
def Scheduler(optimizer, test_interval, max_epoch, lr_decay, **kwargs):
|
7 |
+
|
8 |
+
sche_fn = torch.optim.lr_scheduler.StepLR(optimizer, step_size=test_interval, gamma=lr_decay)
|
9 |
+
|
10 |
+
lr_step = 'epoch'
|
11 |
+
|
12 |
+
print('Initialised step LR scheduler')
|
13 |
+
|
14 |
+
return sche_fn, lr_step
|
15 |
+
|
16 |
+
|
tools/rsync_jz.sh
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
source_path="."
|
2 |
+
target_path="jeanzay:~/wavlm_ssl_sv"
|
3 |
+
|
4 |
+
rsync -azh $source_path $target_path \
|
5 |
+
--progress \
|
6 |
+
--force \
|
7 |
+
--delete \
|
8 |
+
--exclude="slurm_*" \
|
9 |
+
--exclude="data" \
|
10 |
+
--exclude="exp" \
|
11 |
+
--keep-dirlinks
|
12 |
+
|
13 |
+
while inotifywait -r -e modify,create,delete $source_path
|
14 |
+
do
|
15 |
+
rsync -azh $source_path $target_path \
|
16 |
+
--progress \
|
17 |
+
--force \
|
18 |
+
--delete \
|
19 |
+
--exclude="slurm_*" \
|
20 |
+
--exclude="data" \
|
21 |
+
--exclude="exp" \
|
22 |
+
--keep-dirlinks
|
23 |
+
done
|
trainSpeakerNet.py
ADDED
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
#-*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
import sys, time, os, argparse, socket
|
5 |
+
import yaml
|
6 |
+
import numpy
|
7 |
+
import pdb
|
8 |
+
import torch
|
9 |
+
import glob
|
10 |
+
import zipfile
|
11 |
+
import warnings
|
12 |
+
import datetime
|
13 |
+
from tuneThreshold import *
|
14 |
+
from SpeakerNet import *
|
15 |
+
from DatasetLoader import *
|
16 |
+
import torch.distributed as dist
|
17 |
+
import torch.multiprocessing as mp
|
18 |
+
from scipy.stats import norm
|
19 |
+
from sklearn.mixture import GaussianMixture
|
20 |
+
|
21 |
+
## ===== ===== ===== ===== ===== ===== ===== =====
|
22 |
+
## Parse arguments
|
23 |
+
## ===== ===== ===== ===== ===== ===== ===== =====
|
24 |
+
# os.environ['CUDA_VISIBLE_DEVICES']='0,1,2,3'
|
25 |
+
|
26 |
+
parser = argparse.ArgumentParser(description = "SpeakerNet");
|
27 |
+
|
28 |
+
parser.add_argument('--config', type=str, default=None, help='Config YAML file');
|
29 |
+
|
30 |
+
## Data loader
|
31 |
+
parser.add_argument('--max_frames', type=int, default=200, help='Input length to the network for training');
|
32 |
+
parser.add_argument('--eval_frames', type=int, default=300, help='Input length to the network for testing; 0 uses the whole files');
|
33 |
+
parser.add_argument('--batch_size', type=int, default=400, help='Batch size, number of speakers per batch');
|
34 |
+
parser.add_argument('--max_seg_per_spk', type=int, default=500, help='Maximum number of utterances per speaker per epoch');
|
35 |
+
parser.add_argument('--nDataLoaderThread', type=int, default=10, help='Number of loader threads');
|
36 |
+
parser.add_argument('--augment', type=bool, default=True, help='Augment input')
|
37 |
+
parser.add_argument('--seed', type=int, default=20211202, help='Seed for the random number generator');
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
## Training details
|
42 |
+
parser.add_argument('--test_interval', type=int, default=1, help='Test and save every [test_interval] epochs');
|
43 |
+
parser.add_argument('--max_epoch', type=int, default=50, help='Maximum number of epochs');
|
44 |
+
parser.add_argument('--trainfunc', type=str, default="aamsoftmax", help='Loss function');
|
45 |
+
|
46 |
+
## Optimizer
|
47 |
+
parser.add_argument('--optimizer', type=str, default="adamw", help='sgd or adam');
|
48 |
+
parser.add_argument('--scheduler', type=str, default="steplr", help='Learning rate scheduler');
|
49 |
+
parser.add_argument('--lr', type=float, default=0.001, help='Learning rate');
|
50 |
+
parser.add_argument("--lr_decay", type=float, default=0.9, help='Learning rate decay every [test_interval] epochs');
|
51 |
+
|
52 |
+
|
53 |
+
## Pre-trained Transformer Model
|
54 |
+
parser.add_argument('--pretrained_model_path', type=str, default="None", help='Absolute path to the pre-trained model');
|
55 |
+
parser.add_argument('--weight_finetuning_reg', type=float, default=0.001, help='L2 regularization towards the initial pre-trained model');
|
56 |
+
parser.add_argument('--LLRD_factor', type=float, default=1.0, help='Layer-wise Learning Rate Decay (LLRD) factor');
|
57 |
+
parser.add_argument('--LR_Transformer', type=float, default=2e-5, help='Learning rate of pre-trained model');
|
58 |
+
parser.add_argument('--LR_MHFA', type=float, default=5e-3, help='Learning rate of back-end attentive pooling model');
|
59 |
+
|
60 |
+
## Loss functions
|
61 |
+
parser.add_argument("--hard_prob", type=float, default=0.5, help='Hard negative mining probability, otherwise random, only for some loss functions');
|
62 |
+
parser.add_argument("--hard_rank", type=int, default=10, help='Hard negative mining rank in the batch, only for some loss functions');
|
63 |
+
parser.add_argument('--margin', type=float, default=0.2, help='Loss margin, only for some loss functions');
|
64 |
+
parser.add_argument('--scale', type=float, default=30, help='Loss scale, only for some loss functions');
|
65 |
+
parser.add_argument('--nPerSpeaker', type=int, default=1, help='Number of utterances per speaker per batch, only for metric learning based losses');
|
66 |
+
parser.add_argument('--nClasses', type=int, default=5994, help='Number of speakers in the softmax layer, only for softmax-based losses');
|
67 |
+
|
68 |
+
## Evaluation parameters
|
69 |
+
parser.add_argument('--dcf_p_target', type=float, default=0.05, help='A priori probability of the specified target speaker');
|
70 |
+
parser.add_argument('--dcf_c_miss', type=float, default=1, help='Cost of a missed detection');
|
71 |
+
parser.add_argument('--dcf_c_fa', type=float, default=1, help='Cost of a spurious detection');
|
72 |
+
|
73 |
+
## Load and save
|
74 |
+
parser.add_argument('--initial_model', type=str, default="", help='Initial model weights');
|
75 |
+
parser.add_argument('--save_path', type=str, default="exps/exp1", help='Path for model and logs');
|
76 |
+
|
77 |
+
## Training and test data
|
78 |
+
parser.add_argument('--train_list', type=str, default="data/train_list.txt", help='Train list');
|
79 |
+
parser.add_argument('--test_list', type=str, default="data/test_list.txt", help='Evaluation list');
|
80 |
+
parser.add_argument('--train_path', type=str, default="data/voxceleb2", help='Absolute path to the train set');
|
81 |
+
parser.add_argument('--test_path', type=str, default="data/voxceleb1", help='Absolute path to the test set');
|
82 |
+
parser.add_argument('--musan_path', type=str, default="data/musan_split", help='Absolute path to the test set');
|
83 |
+
parser.add_argument('--rir_path', type=str, default="data/simulated_rirs", help='Absolute path to the test set');
|
84 |
+
|
85 |
+
## Model definition
|
86 |
+
parser.add_argument('--n_mels', type=int, default=80, help='Number of mel filterbanks');
|
87 |
+
parser.add_argument('--log_input', type=bool, default=False, help='Log input features')
|
88 |
+
parser.add_argument('--model', type=str, default="", help='Name of model definition');
|
89 |
+
parser.add_argument('--encoder_type', type=str, default="SAP", help='Type of encoder');
|
90 |
+
parser.add_argument('--nOut', type=int, default=192, help='Embedding size in the last FC layer');
|
91 |
+
|
92 |
+
## For test only
|
93 |
+
parser.add_argument('--eval', dest='eval', action='store_true', help='Eval only')
|
94 |
+
|
95 |
+
## Distributed and mixed precision training
|
96 |
+
parser.add_argument('--port', type=str, default="7888", help='Port for distributed training, input as text');
|
97 |
+
parser.add_argument('--distributed', dest='distributed', action='store_true', help='Enable distributed training')
|
98 |
+
parser.add_argument('--mixedprec', dest='mixedprec', action='store_true', help='Enable mixed precision training')
|
99 |
+
|
100 |
+
args = parser.parse_args();
|
101 |
+
|
102 |
+
## Parse YAML
|
103 |
+
def find_option_type(key, parser):
|
104 |
+
for opt in parser._get_optional_actions():
|
105 |
+
if ('--' + key) in opt.option_strings:
|
106 |
+
return opt.type
|
107 |
+
raise ValueError
|
108 |
+
|
109 |
+
if args.config is not None:
|
110 |
+
with open(args.config, "r") as f:
|
111 |
+
yml_config = yaml.load(f, Loader=yaml.FullLoader)
|
112 |
+
for k, v in yml_config.items():
|
113 |
+
if k in args.__dict__:
|
114 |
+
typ = find_option_type(k, parser)
|
115 |
+
args.__dict__[k] = typ(v)
|
116 |
+
else:
|
117 |
+
sys.stderr.write("Ignored unknown parameter {} in yaml.\n".format(k))
|
118 |
+
|
119 |
+
|
120 |
+
## Try to import NSML
|
121 |
+
try:
|
122 |
+
import nsml
|
123 |
+
from nsml import HAS_DATASET, DATASET_PATH, PARALLEL_WORLD, PARALLEL_PORTS, MY_RANK
|
124 |
+
from nsml import NSML_NFS_OUTPUT, SESSION_NAME
|
125 |
+
except:
|
126 |
+
pass;
|
127 |
+
|
128 |
+
warnings.simplefilter("ignore")
|
129 |
+
|
130 |
+
## ===== ===== ===== ===== ===== ===== ===== =====
|
131 |
+
## Trainer script
|
132 |
+
## ===== ===== ===== ===== ===== ===== ===== =====
|
133 |
+
|
134 |
+
def LGL_threshold_update_gmm(loss_vals_path):
|
135 |
+
with open(loss_vals_path, 'r') as f:
|
136 |
+
lines = [line.strip().split() for line in f.readlines()]
|
137 |
+
|
138 |
+
# losses = [float(line[0]) for line in lines]
|
139 |
+
losses = []
|
140 |
+
errs = 0
|
141 |
+
for line in lines:
|
142 |
+
try:
|
143 |
+
losses.append(float(line[0]))
|
144 |
+
except ValueError:
|
145 |
+
errs += 1
|
146 |
+
pass
|
147 |
+
if errs > 0:
|
148 |
+
print('Could not read %d lines' % errs)
|
149 |
+
|
150 |
+
log_losses = np.log(losses)
|
151 |
+
|
152 |
+
gmm = GaussianMixture(n_components=2, random_state=0, covariance_type='full', tol=0.00001, max_iter=1000)
|
153 |
+
gmm.fit(log_losses.reshape(-1, 1))
|
154 |
+
|
155 |
+
mean1 = gmm.means_[0, 0]
|
156 |
+
covar1 = gmm.covariances_[0, 0]
|
157 |
+
weight1 = gmm.weights_[0]
|
158 |
+
x = np.linspace(min(log_losses), max(log_losses), 1000)
|
159 |
+
g1 = weight1 * norm.pdf(x, mean1, np.sqrt(covar1))
|
160 |
+
|
161 |
+
mean2 = gmm.means_[1, 0]
|
162 |
+
covar2 = gmm.covariances_[1, 0]
|
163 |
+
weight2 = gmm.weights_[1]
|
164 |
+
g2 = weight2 * norm.pdf(x, mean2, np.sqrt(covar2))
|
165 |
+
|
166 |
+
intersection = np.argwhere(np.diff(np.sign(g1 - g2))).flatten()
|
167 |
+
|
168 |
+
max1 = x[np.argmax(g1)]
|
169 |
+
max2 = x[np.argmax(g2)]
|
170 |
+
good_intersection = x[intersection][(x[intersection] > min(max1, max2)) & (x[intersection] < max(max1, max2))]
|
171 |
+
assert len(good_intersection) == 1, 'Wrong number of intersections'
|
172 |
+
good_intersection = good_intersection[0]
|
173 |
+
|
174 |
+
return good_intersection
|
175 |
+
|
176 |
+
import idr_torch
|
177 |
+
|
178 |
+
def main_worker(gpu, ngpus_per_node, args):
|
179 |
+
|
180 |
+
args.gpu = gpu
|
181 |
+
|
182 |
+
args.gpu = idr_torch.rank
|
183 |
+
ngpus_per_node = idr_torch.size
|
184 |
+
|
185 |
+
## Load models
|
186 |
+
s = SpeakerNet(**vars(args));
|
187 |
+
|
188 |
+
if args.distributed:
|
189 |
+
# os.environ['MASTER_ADDR']='localhost'
|
190 |
+
# os.environ['MASTER_PORT']=args.port
|
191 |
+
|
192 |
+
# dist.init_process_group(backend='nccl', world_size=ngpus_per_node, rank=args.gpu, init_method='tcp://localhost:12345')
|
193 |
+
dist.init_process_group(backend='nccl', world_size=ngpus_per_node, rank=args.gpu)
|
194 |
+
|
195 |
+
torch.cuda.set_device(args.gpu)
|
196 |
+
s.cuda(args.gpu)
|
197 |
+
|
198 |
+
s = torch.nn.parallel.DistributedDataParallel(s, device_ids=[args.gpu])#, find_unused_parameters=True)
|
199 |
+
|
200 |
+
print('Loaded the model on GPU {:d}'.format(args.gpu))
|
201 |
+
|
202 |
+
else:
|
203 |
+
s = WrappedModel(s).cuda(args.gpu)
|
204 |
+
|
205 |
+
it = 1
|
206 |
+
eers = [100];
|
207 |
+
|
208 |
+
if args.gpu == 0:
|
209 |
+
## Write args to scorefile
|
210 |
+
scorefile = open(args.result_save_path+"/scores.txt", "a+");
|
211 |
+
|
212 |
+
## Initialise trainer and data loader
|
213 |
+
train_dataset = train_dataset_loader(**vars(args))
|
214 |
+
|
215 |
+
train_sampler = train_dataset_sampler(train_dataset, **vars(args))
|
216 |
+
|
217 |
+
train_loader = torch.utils.data.DataLoader(
|
218 |
+
train_dataset,
|
219 |
+
batch_size=args.batch_size,
|
220 |
+
num_workers=args.nDataLoaderThread,
|
221 |
+
sampler=train_sampler,
|
222 |
+
pin_memory=True,
|
223 |
+
worker_init_fn=worker_init_fn,
|
224 |
+
drop_last=True,
|
225 |
+
)
|
226 |
+
|
227 |
+
# trainLoader = get_data_loader(args.train_list, **vars(args));
|
228 |
+
trainer = ModelTrainer(s, **vars(args))
|
229 |
+
|
230 |
+
## Load model weights
|
231 |
+
modelfiles = glob.glob('%s/model0*.model'%args.model_save_path)
|
232 |
+
modelfiles.sort()
|
233 |
+
|
234 |
+
if(args.initial_model != ""):
|
235 |
+
trainer.loadParameters(args.initial_model);
|
236 |
+
print("Model {} loaded!".format(args.initial_model));
|
237 |
+
elif len(modelfiles) >= 1:
|
238 |
+
print("Model {} loaded from previous state!".format(modelfiles[-1]));
|
239 |
+
trainer.loadParameters(modelfiles[-1]);
|
240 |
+
it = int(os.path.splitext(os.path.basename(modelfiles[-1]))[0][5:]) + 1
|
241 |
+
|
242 |
+
for ii in range(1,it):
|
243 |
+
trainer.__scheduler__.step()
|
244 |
+
|
245 |
+
|
246 |
+
pytorch_total_params = sum(p.numel() for p in s.module.__S__.parameters())
|
247 |
+
|
248 |
+
print('Total parameters: ',pytorch_total_params)
|
249 |
+
## Evaluation code - must run on single GPU
|
250 |
+
if args.eval == True:
|
251 |
+
|
252 |
+
|
253 |
+
print('Test list',args.test_list)
|
254 |
+
|
255 |
+
sc, lab, _, sc1,sc2 = trainer.evaluateFromList(**vars(args))
|
256 |
+
|
257 |
+
if args.gpu == 0:
|
258 |
+
|
259 |
+
result = tuneThresholdfromScore(sc, lab, [1, 0.1]);
|
260 |
+
result_s1 = tuneThresholdfromScore(sc1, lab, [1, 0.1]);
|
261 |
+
result_s2 = tuneThresholdfromScore(sc2, lab, [1, 0.1]);
|
262 |
+
|
263 |
+
|
264 |
+
|
265 |
+
fnrs, fprs, thresholds = ComputeErrorRates(sc, lab)
|
266 |
+
mindcf, threshold = ComputeMinDcf(fnrs, fprs, thresholds, args.dcf_p_target, args.dcf_c_miss, args.dcf_c_fa)
|
267 |
+
|
268 |
+
print('\n',time.strftime("%Y-%m-%d %H:%M:%S"), "VEER {:2.4f}".format(result[1]), "VEER_s1 {:2.4f}".format(result_s1[1]),"VEER_s2 {:2.4f}".format(result_s2[1]),"MinDCF {:2.5f}".format(mindcf));
|
269 |
+
|
270 |
+
if ("nsml" in sys.modules) and args.gpu == 0:
|
271 |
+
training_report = {};
|
272 |
+
training_report["summary"] = True;
|
273 |
+
training_report["epoch"] = it;
|
274 |
+
training_report["step"] = it;
|
275 |
+
training_report["val_eer"] = result[1];
|
276 |
+
training_report["val_dcf"] = mindcf;
|
277 |
+
|
278 |
+
nsml.report(**training_report);
|
279 |
+
|
280 |
+
return
|
281 |
+
|
282 |
+
## Save training code and params
|
283 |
+
if args.gpu == 0:
|
284 |
+
pyfiles = glob.glob('./*.py')
|
285 |
+
strtime = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
|
286 |
+
|
287 |
+
zipf = zipfile.ZipFile(args.result_save_path+ '/run%s.zip'%strtime, 'w', zipfile.ZIP_DEFLATED)
|
288 |
+
for file in pyfiles:
|
289 |
+
zipf.write(file)
|
290 |
+
zipf.close()
|
291 |
+
|
292 |
+
with open(args.result_save_path + '/run%s.cmd'%strtime, 'w') as f:
|
293 |
+
f.write('%s'%args)
|
294 |
+
|
295 |
+
|
296 |
+
## Core training script
|
297 |
+
for it in range(it,args.max_epoch+1):
|
298 |
+
|
299 |
+
train_sampler.set_epoch(it)
|
300 |
+
|
301 |
+
clr = [x['lr'] for x in trainer.__optimizer__.param_groups]
|
302 |
+
|
303 |
+
loss_vals_dir = 'exp/' + args.save_path.split('/')[-1] + '/loss_vals'
|
304 |
+
os.makedirs(loss_vals_dir, exist_ok=True)
|
305 |
+
loss_vals_path = os.path.join(loss_vals_dir, 'epoch_%d.txt' % it)
|
306 |
+
|
307 |
+
if it >= 5:
|
308 |
+
prev_loss_vals_path = os.path.join(loss_vals_dir, 'epoch_%d.txt' % (it - 1))
|
309 |
+
LGL_threshold = LGL_threshold_update_gmm(prev_loss_vals_path)
|
310 |
+
# LGL_threshold = 1
|
311 |
+
|
312 |
+
if args.gpu == 0:
|
313 |
+
if LGL_threshold is not None:
|
314 |
+
print('Updated LGL threshold to %f' % LGL_threshold)
|
315 |
+
else:
|
316 |
+
print('Wrong number of intersections, keeping LGL threshold at %f' % LGL_threshold)
|
317 |
+
|
318 |
+
trainer.update_lgl_threshold(LGL_threshold)
|
319 |
+
|
320 |
+
|
321 |
+
loss, traineer = trainer.train_network(train_loader, loss_vals_path, it, verbose=(args.gpu == 0))
|
322 |
+
|
323 |
+
if args.distributed:
|
324 |
+
dist.barrier()
|
325 |
+
with open(loss_vals_path, 'w') as final_file:
|
326 |
+
for r in range(dist.get_world_size()):
|
327 |
+
part_file_path = f"{loss_vals_path.split('.')[0]}_rank{r}.txt"
|
328 |
+
with open(part_file_path, 'r') as part_file:
|
329 |
+
final_file.write(part_file.read())
|
330 |
+
|
331 |
+
if args.gpu == 0:
|
332 |
+
print('\n',time.strftime("%Y-%m-%d %H:%M:%S"), "Epoch {:d}, TEER/TAcc {:2.2f}, TLOSS {:f}, LR {:f}".format(it, traineer.item(), loss.item(), max(clr)));
|
333 |
+
scorefile.write("Epoch {:d}, TEER/TAcc {:2.2f}, TLOSS {:f}, LR {:f} \n".format(it, traineer.item(), loss.item(), max(clr)));
|
334 |
+
|
335 |
+
if it % args.test_interval == 0:
|
336 |
+
|
337 |
+
# sc, lab, _, as1, as2 = trainer.evaluateFromList(**vars(args))
|
338 |
+
|
339 |
+
if args.gpu == 0:
|
340 |
+
trainer.saveParameters(args.model_save_path+"/model%09d.model"%it);
|
341 |
+
|
342 |
+
scorefile.flush()
|
343 |
+
|
344 |
+
if ("nsml" in sys.modules) and args.gpu == 0:
|
345 |
+
training_report = {};
|
346 |
+
training_report["summary"] = True;
|
347 |
+
training_report["epoch"] = it;
|
348 |
+
training_report["step"] = it;
|
349 |
+
training_report["train_loss"] = loss;
|
350 |
+
training_report["min_eer"] = min(eers);
|
351 |
+
|
352 |
+
nsml.report(**training_report);
|
353 |
+
|
354 |
+
if args.gpu == 0:
|
355 |
+
scorefile.close();
|
356 |
+
|
357 |
+
## ===== ===== ===== ===== ===== ===== ===== =====
|
358 |
+
## Main function
|
359 |
+
## ===== ===== ===== ===== ===== ===== ===== =====
|
360 |
+
|
361 |
+
|
362 |
+
def main():
|
363 |
+
|
364 |
+
# print(os.environ.get('CUDA_VISIBLE_DEVICES', 'Not set'))
|
365 |
+
# os.environ['CUDA_VISIBLE_DEVICES'] = '1,2'
|
366 |
+
# print(os.environ.get('CUDA_VISIBLE_DEVICES', 'Not set'))
|
367 |
+
|
368 |
+
|
369 |
+
if ("nsml" in sys.modules) and not args.eval:
|
370 |
+
args.save_path = os.path.join(args.save_path,SESSION_NAME.replace('/','_'))
|
371 |
+
|
372 |
+
args.model_save_path = args.save_path+"/model"
|
373 |
+
args.result_save_path = args.save_path+"/result"
|
374 |
+
args.feat_save_path = ""
|
375 |
+
|
376 |
+
os.makedirs(args.model_save_path, exist_ok=True)
|
377 |
+
os.makedirs(args.result_save_path, exist_ok=True)
|
378 |
+
|
379 |
+
n_gpus = torch.cuda.device_count()
|
380 |
+
print(n_gpus)
|
381 |
+
|
382 |
+
print('Python Version:', sys.version)
|
383 |
+
print('PyTorch Version:', torch.__version__)
|
384 |
+
print('Number of GPUs:', torch.cuda.device_count())
|
385 |
+
print('Save path:',args.save_path)
|
386 |
+
|
387 |
+
if args.distributed:
|
388 |
+
# mp.spawn(main_worker, nprocs=n_gpus, args=(n_gpus, args))
|
389 |
+
main_worker(None, None, args)
|
390 |
+
else:
|
391 |
+
main_worker(0, None, args)
|
392 |
+
|
393 |
+
|
394 |
+
if __name__ == '__main__':
|
395 |
+
main()
|
trainSpeakerNet_Eval.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
#-*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
import sys, time, os, argparse, socket
|
5 |
+
import yaml
|
6 |
+
import numpy
|
7 |
+
import pdb
|
8 |
+
import torch
|
9 |
+
import glob
|
10 |
+
import zipfile
|
11 |
+
import csv
|
12 |
+
import warnings
|
13 |
+
import datetime
|
14 |
+
from tuneThreshold import *
|
15 |
+
from SpeakerNet import *
|
16 |
+
from DatasetLoader import *
|
17 |
+
import torch.distributed as dist
|
18 |
+
import torch.multiprocessing as mp
|
19 |
+
|
20 |
+
## ===== ===== ===== ===== ===== ===== ===== =====
|
21 |
+
## Parse arguments
|
22 |
+
## ===== ===== ===== ===== ===== ===== ===== =====
|
23 |
+
# os.environ['CUDA_VISIBLE_DEVICES']='0'
|
24 |
+
parser = argparse.ArgumentParser(description = "SpeakerNet");
|
25 |
+
|
26 |
+
parser.add_argument('--config', type=str, default=None, help='Config YAML file');
|
27 |
+
|
28 |
+
## Data loader
|
29 |
+
parser.add_argument('--max_frames', type=int, default=200, help='Input length to the network for training');
|
30 |
+
parser.add_argument('--eval_frames', type=int, default=300, help='Input length to the network for testing; 0 uses the whole files');
|
31 |
+
parser.add_argument('--batch_size', type=int, default=400, help='Batch size, number of speakers per batch');
|
32 |
+
parser.add_argument('--max_seg_per_spk', type=int, default=500, help='Maximum number of utterances per speaker per epoch');
|
33 |
+
parser.add_argument('--nDataLoaderThread', type=int, default=10, help='Number of loader threads');
|
34 |
+
parser.add_argument('--augment', type=bool, default=True, help='Augment input')
|
35 |
+
parser.add_argument('--seed', type=int, default=20211202, help='Seed for the random number generator');
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
## Training details
|
40 |
+
parser.add_argument('--test_interval', type=int, default=1, help='Test and save every [test_interval] epochs');
|
41 |
+
parser.add_argument('--max_epoch', type=int, default=50, help='Maximum number of epochs');
|
42 |
+
parser.add_argument('--trainfunc', type=str, default="aamsoftmax", help='Loss function');
|
43 |
+
|
44 |
+
## Optimizer
|
45 |
+
parser.add_argument('--optimizer', type=str, default="adamw", help='sgd or adam');
|
46 |
+
parser.add_argument('--scheduler', type=str, default="steplr", help='Learning rate scheduler');
|
47 |
+
parser.add_argument('--lr', type=float, default=0.001, help='Learning rate');
|
48 |
+
|
49 |
+
|
50 |
+
## Pre-trained Transformer Model
|
51 |
+
parser.add_argument('--pretrained_model_path', type=str, default="None", help='Absolute path to the pre-trained model');
|
52 |
+
parser.add_argument('--weight_finetuning_reg', type=float, default=0.001, help='L2 regularization towards the initial pre-trained model');
|
53 |
+
parser.add_argument('--LLRD_factor', type=float, default=1.0, help='Layer-wise Learning Rate Decay (LLRD) factor');
|
54 |
+
parser.add_argument('--LR_Transformer', type=float, default=2e-5, help='Learning rate of pre-trained model');
|
55 |
+
parser.add_argument('--LR_MHFA', type=float, default=5e-3, help='Learning rate of back-end attentive pooling model');
|
56 |
+
|
57 |
+
## Loss functions
|
58 |
+
parser.add_argument("--hard_prob", type=float, default=0.5, help='Hard negative mining probability, otherwise random, only for some loss functions');
|
59 |
+
parser.add_argument("--hard_rank", type=int, default=10, help='Hard negative mining rank in the batch, only for some loss functions');
|
60 |
+
parser.add_argument('--margin', type=float, default=0.2, help='Loss margin, only for some loss functions');
|
61 |
+
parser.add_argument('--scale', type=float, default=30, help='Loss scale, only for some loss functions');
|
62 |
+
parser.add_argument('--nPerSpeaker', type=int, default=1, help='Number of utterances per speaker per batch, only for metric learning based losses');
|
63 |
+
parser.add_argument('--nClasses', type=int, default=5994, help='Number of speakers in the softmax layer, only for softmax-based losses');
|
64 |
+
|
65 |
+
## Evaluation parameters
|
66 |
+
parser.add_argument('--dcf_p_target', type=float, default=0.05, help='A priori probability of the specified target speaker');
|
67 |
+
parser.add_argument('--dcf_c_miss', type=float, default=1, help='Cost of a missed detection');
|
68 |
+
parser.add_argument('--dcf_c_fa', type=float, default=1, help='Cost of a spurious detection');
|
69 |
+
|
70 |
+
## Load and save
|
71 |
+
parser.add_argument('--initial_model', type=str, default="", help='Initial model weights');
|
72 |
+
parser.add_argument('--save_path', type=str, default="exps/exp1", help='Path for model and logs');
|
73 |
+
|
74 |
+
## Training and test data
|
75 |
+
parser.add_argument('--train_list', type=str, default="data/train_list.txt", help='Train list');
|
76 |
+
parser.add_argument('--test_list', type=str, default="data/test_list.txt", help='Evaluation list');
|
77 |
+
parser.add_argument('--train_path', type=str, default="data/voxceleb2", help='Absolute path to the train set');
|
78 |
+
parser.add_argument('--test_path', type=str, default="data/voxceleb1", help='Absolute path to the test set');
|
79 |
+
parser.add_argument('--musan_path', type=str, default="data/musan_split", help='Absolute path to the test set');
|
80 |
+
parser.add_argument('--rir_path', type=str, default="data/simulated_rirs", help='Absolute path to the test set');
|
81 |
+
|
82 |
+
## Model definition
|
83 |
+
parser.add_argument('--n_mels', type=int, default=80, help='Number of mel filterbanks');
|
84 |
+
parser.add_argument('--log_input', type=bool, default=False, help='Log input features')
|
85 |
+
parser.add_argument('--model', type=str, default="", help='Name of model definition');
|
86 |
+
parser.add_argument('--encoder_type', type=str, default="SAP", help='Type of encoder');
|
87 |
+
parser.add_argument('--nOut', type=int, default=192, help='Embedding size in the last FC layer');
|
88 |
+
|
89 |
+
## For test only
|
90 |
+
parser.add_argument('--eval', dest='eval', action='store_true', help='Eval only')
|
91 |
+
|
92 |
+
parser.add_argument('--generate_embeddings', dest='generate_embeddings', action='store_true', help='Generate embeddings for the train set')
|
93 |
+
parser.add_argument('--embeddings_path', type=str, default="")
|
94 |
+
parser.add_argument('--generate_pseudo_labels', dest='generate_pseudo_labels', action='store_true', help='Generate pseudo labels for the train set')
|
95 |
+
|
96 |
+
## Distributed and mixed precision training
|
97 |
+
parser.add_argument('--port', type=str, default="7888", help='Port for distributed training, input as text');
|
98 |
+
parser.add_argument('--distributed', dest='distributed', action='store_true', help='Enable distributed training')
|
99 |
+
parser.add_argument('--mixedprec', dest='mixedprec', action='store_true', help='Enable mixed precision training')
|
100 |
+
|
101 |
+
args = parser.parse_args();
|
102 |
+
|
103 |
+
## Parse YAML
|
104 |
+
def find_option_type(key, parser):
|
105 |
+
for opt in parser._get_optional_actions():
|
106 |
+
if ('--' + key) in opt.option_strings:
|
107 |
+
return opt.type
|
108 |
+
raise ValueError
|
109 |
+
|
110 |
+
if args.config is not None:
|
111 |
+
with open(args.config, "r") as f:
|
112 |
+
yml_config = yaml.load(f, Loader=yaml.FullLoader)
|
113 |
+
for k, v in yml_config.items():
|
114 |
+
if k in args.__dict__:
|
115 |
+
typ = find_option_type(k, parser)
|
116 |
+
args.__dict__[k] = typ(v)
|
117 |
+
else:
|
118 |
+
sys.stderr.write("Ignored unknown parameter {} in yaml.\n".format(k))
|
119 |
+
|
120 |
+
|
121 |
+
## Try to import NSML
|
122 |
+
try:
|
123 |
+
import nsml
|
124 |
+
from nsml import HAS_DATASET, DATASET_PATH, PARALLEL_WORLD, PARALLEL_PORTS, MY_RANK
|
125 |
+
from nsml import NSML_NFS_OUTPUT, SESSION_NAME
|
126 |
+
except:
|
127 |
+
pass;
|
128 |
+
|
129 |
+
warnings.simplefilter("ignore")
|
130 |
+
|
131 |
+
## ===== ===== ===== ===== ===== ===== ===== =====
|
132 |
+
## Trainer script
|
133 |
+
## ===== ===== ===== ===== ===== ===== ===== =====
|
134 |
+
|
135 |
+
def main_worker(gpu, ngpus_per_node, args):
|
136 |
+
|
137 |
+
args.gpu = gpu
|
138 |
+
|
139 |
+
## Load models
|
140 |
+
s = SpeakerNet(**vars(args));
|
141 |
+
|
142 |
+
|
143 |
+
s = WrappedModel(s).cuda(args.gpu)
|
144 |
+
|
145 |
+
it = 1
|
146 |
+
eers = [100];
|
147 |
+
|
148 |
+
# trainLoader = get_data_loader(args.train_list, **vars(args));
|
149 |
+
trainer = ModelTrainer(s, **vars(args))
|
150 |
+
|
151 |
+
## Load model weights
|
152 |
+
modelfiles = glob.glob('%s/model0*.model'%args.model_save_path)
|
153 |
+
modelfiles.sort()
|
154 |
+
|
155 |
+
if(args.initial_model != ""):
|
156 |
+
trainer.loadParameters(args.initial_model);
|
157 |
+
print("Model {} loaded!".format(args.initial_model));
|
158 |
+
elif len(modelfiles) >= 1:
|
159 |
+
# print("Model {} loaded from previous state!".format(modelfiles[-2]));
|
160 |
+
# trainer.loadParameters(modelfiles[-2]);
|
161 |
+
it = int(os.path.splitext(os.path.basename(modelfiles[-1]))[0][5:]) + 1
|
162 |
+
|
163 |
+
for ii in range(1,it):
|
164 |
+
trainer.__scheduler__.step()
|
165 |
+
|
166 |
+
|
167 |
+
# pytorch_total_params = sum(p.numel() for p in s.module.__S__.model.feature_extractor.parameters())
|
168 |
+
pytorch_total_params = sum(p.numel() for p in s.module.__S__.parameters())
|
169 |
+
|
170 |
+
|
171 |
+
print('Total parameters: ',pytorch_total_params)
|
172 |
+
# quit();
|
173 |
+
## Evaluation code - must run on single GPU
|
174 |
+
if args.eval == True:
|
175 |
+
scorefile_score = open(args.result_save_path+"/Eval_scores_mean_O_All.txt", "w");
|
176 |
+
print('Test list',args.test_list)
|
177 |
+
|
178 |
+
for i in range(1,15):
|
179 |
+
print("Model {} loaded from previous state!".format(modelfiles[-i]));
|
180 |
+
trainer.loadParameters(modelfiles[-i]);
|
181 |
+
# trainer.loadParameters(modelfiles[0]);
|
182 |
+
|
183 |
+
# sc, lab, _,sc1,sc2 = trainer.evaluateFromList_1utterance(**vars(args))
|
184 |
+
sc, lab, _,sc1,sc2 = trainer.evaluateFromList(**vars(args))
|
185 |
+
|
186 |
+
if args.gpu == 0:
|
187 |
+
|
188 |
+
result = tuneThresholdfromScore(sc, lab, [1, 0.1]);
|
189 |
+
result1 = tuneThresholdfromScore(sc1, lab, [1, 0.1]);
|
190 |
+
result2 = tuneThresholdfromScore(sc2, lab, [1, 0.1]);
|
191 |
+
|
192 |
+
fnrs, fprs, thresholds = ComputeErrorRates(sc, lab)
|
193 |
+
|
194 |
+
mindcf, threshold = ComputeMinDcf(fnrs, fprs, thresholds, args.dcf_p_target, args.dcf_c_miss, args.dcf_c_fa)
|
195 |
+
mindcf_1, threshold_1 = ComputeMinDcf(fnrs, fprs, thresholds, 0.01, args.dcf_c_miss, args.dcf_c_fa)
|
196 |
+
|
197 |
+
print('\n',time.strftime("%Y-%m-%d %H:%M:%S"), "VEER {:2.4f}".format(result[1]),"MinDCF05 {:2.5f}".format(mindcf), "MinDCF01 {:2.5f}".format(mindcf_1));
|
198 |
+
|
199 |
+
scorefile_score.write("Epoch {}, VEER {:2.4f}, VEER_S1 {:2.4f}, VEER_S2 {:2.4f}, MinDCF05 {:2.5f}, MinDCF01 {:2.5f}\n".format(modelfiles[-i], result[1], result1[1], result2[1], mindcf,mindcf_1));
|
200 |
+
scorefile_score.flush()
|
201 |
+
|
202 |
+
scorefile_score.close()
|
203 |
+
return
|
204 |
+
|
205 |
+
if args.generate_embeddings == True:
|
206 |
+
print('Generate embeddings for the train set')
|
207 |
+
wav_list_file = args.train_list
|
208 |
+
with open(wav_list_file,'r') as f:
|
209 |
+
wav_files = [args.train_path + '/' + line.strip().split()[1] for line in f.readlines()]
|
210 |
+
|
211 |
+
print("Model {} loaded from previous state!".format(modelfiles[-1]));
|
212 |
+
trainer.loadParameters(modelfiles[-1]);
|
213 |
+
|
214 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
215 |
+
|
216 |
+
trainer.generate_embeddings(wav_files, args.embeddings_path, device)
|
217 |
+
|
218 |
+
|
219 |
+
## ===== ===== ===== ===== ===== ===== ===== =====
|
220 |
+
## Main function
|
221 |
+
## ===== ===== ===== ===== ===== ===== ===== =====
|
222 |
+
|
223 |
+
|
224 |
+
def main():
|
225 |
+
|
226 |
+
if ("nsml" in sys.modules) and not args.eval:
|
227 |
+
args.save_path = os.path.join(args.save_path,SESSION_NAME.replace('/','_'))
|
228 |
+
|
229 |
+
args.model_save_path = args.save_path+"/model"
|
230 |
+
args.result_save_path = args.save_path+"/result"
|
231 |
+
args.feat_save_path = ""
|
232 |
+
|
233 |
+
os.makedirs(args.model_save_path, exist_ok=True)
|
234 |
+
os.makedirs(args.result_save_path, exist_ok=True)
|
235 |
+
|
236 |
+
n_gpus = torch.cuda.device_count()
|
237 |
+
|
238 |
+
print('Python Version:', sys.version)
|
239 |
+
print('PyTorch Version:', torch.__version__)
|
240 |
+
print('Number of GPUs:', torch.cuda.device_count())
|
241 |
+
print('Save path:',args.save_path)
|
242 |
+
|
243 |
+
if args.distributed:
|
244 |
+
mp.spawn(main_worker, nprocs=n_gpus, args=(n_gpus, args))
|
245 |
+
else:
|
246 |
+
main_worker(0, None, args)
|
247 |
+
|
248 |
+
|
249 |
+
if __name__ == '__main__':
|
250 |
+
main()
|
train_ddp_jz.sh
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
#SBATCH --job-name=wavlm_ssl_sv
|
4 |
+
#SBATCH --output=slurm_%j
|
5 |
+
#SBATCH --nodes=1
|
6 |
+
#SBATCH --ntasks=2
|
7 |
+
#SBATCH --gres=gpu:2
|
8 |
+
#SBATCH --cpus-per-task=10
|
9 |
+
#SBATCH --constraint=a100
|
10 |
+
#SBATCH --time=20:00:00
|
11 |
+
#SBATCH --hint=nomultithread
|
12 |
+
#SBATCH --account=kdp@a100
|
13 |
+
|
14 |
+
module purge
|
15 |
+
|
16 |
+
module load cpuarch/amd
|
17 |
+
module load pytorch-gpu/py3/1.12.1
|
18 |
+
|
19 |
+
srun python -u trainSpeakerNet.py --config configs/wavlm_mhfa_dlg_lc.yaml --train_list exp/train_list_dino.txt --distributed
|
training_framework.svg
ADDED
tuneThreshold.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
#-*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
import os
|
5 |
+
import glob
|
6 |
+
import sys
|
7 |
+
import time
|
8 |
+
from sklearn import metrics
|
9 |
+
import numpy
|
10 |
+
import pdb
|
11 |
+
from operator import itemgetter
|
12 |
+
|
13 |
+
def tuneThresholdfromScore(scores, labels, target_fa, target_fr = None):
|
14 |
+
|
15 |
+
fpr, tpr, thresholds = metrics.roc_curve(labels, scores, pos_label=1)
|
16 |
+
fnr = 1 - tpr
|
17 |
+
|
18 |
+
tunedThreshold = [];
|
19 |
+
if target_fr:
|
20 |
+
for tfr in target_fr:
|
21 |
+
idx = numpy.nanargmin(numpy.absolute((tfr - fnr)))
|
22 |
+
tunedThreshold.append([thresholds[idx], fpr[idx], fnr[idx]]);
|
23 |
+
|
24 |
+
for tfa in target_fa:
|
25 |
+
idx = numpy.nanargmin(numpy.absolute((tfa - fpr))) # numpy.where(fpr<=tfa)[0][-1]
|
26 |
+
tunedThreshold.append([thresholds[idx], fpr[idx], fnr[idx]]);
|
27 |
+
|
28 |
+
idxE = numpy.nanargmin(numpy.absolute((fnr - fpr)))
|
29 |
+
eer = max(fpr[idxE],fnr[idxE])*100
|
30 |
+
|
31 |
+
return (tunedThreshold, eer, fpr, fnr);
|
32 |
+
|
33 |
+
# Creates a list of false-negative rates, a list of false-positive rates
|
34 |
+
# and a list of decision thresholds that give those error-rates.
|
35 |
+
def ComputeErrorRates(scores, labels):
|
36 |
+
|
37 |
+
# Sort the scores from smallest to largest, and also get the corresponding
|
38 |
+
# indexes of the sorted scores. We will treat the sorted scores as the
|
39 |
+
# thresholds at which the the error-rates are evaluated.
|
40 |
+
sorted_indexes, thresholds = zip(*sorted(
|
41 |
+
[(index, threshold) for index, threshold in enumerate(scores)],
|
42 |
+
key=itemgetter(1)))
|
43 |
+
sorted_labels = []
|
44 |
+
labels = [labels[i] for i in sorted_indexes]
|
45 |
+
fnrs = []
|
46 |
+
fprs = []
|
47 |
+
|
48 |
+
# At the end of this loop, fnrs[i] is the number of errors made by
|
49 |
+
# incorrectly rejecting scores less than thresholds[i]. And, fprs[i]
|
50 |
+
# is the total number of times that we have correctly accepted scores
|
51 |
+
# greater than thresholds[i].
|
52 |
+
for i in range(0, len(labels)):
|
53 |
+
if i == 0:
|
54 |
+
fnrs.append(labels[i])
|
55 |
+
fprs.append(1 - labels[i])
|
56 |
+
else:
|
57 |
+
fnrs.append(fnrs[i-1] + labels[i])
|
58 |
+
fprs.append(fprs[i-1] + 1 - labels[i])
|
59 |
+
fnrs_norm = sum(labels)
|
60 |
+
fprs_norm = len(labels) - fnrs_norm
|
61 |
+
|
62 |
+
# Now divide by the total number of false negative errors to
|
63 |
+
# obtain the false positive rates across all thresholds
|
64 |
+
fnrs = [x / float(fnrs_norm) for x in fnrs]
|
65 |
+
|
66 |
+
# Divide by the total number of corret positives to get the
|
67 |
+
# true positive rate. Subtract these quantities from 1 to
|
68 |
+
# get the false positive rates.
|
69 |
+
fprs = [1 - x / float(fprs_norm) for x in fprs]
|
70 |
+
return fnrs, fprs, thresholds
|
71 |
+
|
72 |
+
# Computes the minimum of the detection cost function. The comments refer to
|
73 |
+
# equations in Section 3 of the NIST 2016 Speaker Recognition Evaluation Plan.
|
74 |
+
def ComputeMinDcf(fnrs, fprs, thresholds, p_target, c_miss, c_fa):
|
75 |
+
min_c_det = float("inf")
|
76 |
+
min_c_det_threshold = thresholds[0]
|
77 |
+
for i in range(0, len(fnrs)):
|
78 |
+
# See Equation (2). it is a weighted sum of false negative
|
79 |
+
# and false positive errors.
|
80 |
+
c_det = c_miss * fnrs[i] * p_target + c_fa * fprs[i] * (1 - p_target)
|
81 |
+
if c_det < min_c_det:
|
82 |
+
min_c_det = c_det
|
83 |
+
min_c_det_threshold = thresholds[i]
|
84 |
+
# See Equations (3) and (4). Now we normalize the cost.
|
85 |
+
c_def = min(c_miss * p_target, c_fa * (1 - p_target))
|
86 |
+
min_dcf = min_c_det / c_def
|
87 |
+
return min_dcf, min_c_det_threshold
|
utils.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! /usr/bin/python
|
2 |
+
# -*- encoding: utf-8 -*-
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
def accuracy(output, target, topk=(1,)):
|
8 |
+
"""Computes the precision@k for the specified values of k"""
|
9 |
+
maxk = max(topk)
|
10 |
+
batch_size = target.size(0)
|
11 |
+
|
12 |
+
_, pred = output.topk(maxk, 1, True, True)
|
13 |
+
pred = pred.t()
|
14 |
+
correct = pred.eq(target.view(1, -1).expand_as(pred))
|
15 |
+
|
16 |
+
res = []
|
17 |
+
for k in topk:
|
18 |
+
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
|
19 |
+
res.append(correct_k.mul_(100.0 / batch_size))
|
20 |
+
return res
|
21 |
+
|
22 |
+
class PreEmphasis(torch.nn.Module):
|
23 |
+
|
24 |
+
def __init__(self, coef: float = 0.97):
|
25 |
+
super().__init__()
|
26 |
+
self.coef = coef
|
27 |
+
# make kernel
|
28 |
+
# In pytorch, the convolution operation uses cross-correlation. So, filter is flipped.
|
29 |
+
self.register_buffer(
|
30 |
+
'flipped_filter', torch.FloatTensor([-self.coef, 1.]).unsqueeze(0).unsqueeze(0)
|
31 |
+
)
|
32 |
+
|
33 |
+
def forward(self, input: torch.tensor) -> torch.tensor:
|
34 |
+
assert len(input.size()) == 2, 'The number of dimensions of input tensor must be 2!'
|
35 |
+
# reflect padding to match lengths of in/out
|
36 |
+
input = input.unsqueeze(1)
|
37 |
+
input = F.pad(input, (1, 0), 'reflect')
|
38 |
+
return F.conv1d(input, self.flipped_filter).squeeze(1)
|