thefrigidliquidation
commited on
Commit
•
0db3ac6
1
Parent(s):
3806899
Add code to use the model
Browse files- pronoun_fixer.py +219 -0
pronoun_fixer.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from tqdm import tqdm
|
2 |
+
from transformers import FillMaskPipeline, RobertaTokenizerFast
|
3 |
+
|
4 |
+
|
5 |
+
MAX_CTX_LEN = 512
|
6 |
+
|
7 |
+
SPACE_PREFIX = 'Ġ'
|
8 |
+
|
9 |
+
PRONOUN_TOKENS = {
|
10 |
+
'I', 'ĠI',
|
11 |
+
'you', 'You', 'Ġyou', 'ĠYou',
|
12 |
+
'he', 'He', 'Ġhe', 'ĠHe',
|
13 |
+
'she', 'She', 'Ġshe', 'ĠShe',
|
14 |
+
'it', 'It', 'Ġit', 'ĠIt',
|
15 |
+
'we', 'We', 'Ġwe', 'ĠWe',
|
16 |
+
'they', 'They', 'Ġthey', 'ĠThey',
|
17 |
+
'my', 'My', 'Ġmy', 'ĠMy',
|
18 |
+
'your', 'Your', 'Ġyour', 'ĠYour',
|
19 |
+
'his', 'His', 'Ġhis', 'ĠHis',
|
20 |
+
'her', 'Her', 'Ġher', 'ĠHer',
|
21 |
+
'its', 'Its', 'Ġits', 'ĠIts',
|
22 |
+
'our', 'Our', 'Ġour', 'ĠOur',
|
23 |
+
'their', 'Their', 'Ġtheir', 'ĠTheir',
|
24 |
+
'mine', 'Mine', 'Ġmine', 'ĠMine',
|
25 |
+
'yours', 'Yours', 'Ġyours', 'ĠYours',
|
26 |
+
'hers', 'Hers', 'Ġhers', 'ĠHers',
|
27 |
+
'ours', 'Ours', 'Ġours', 'ĠOurs',
|
28 |
+
'theirs', 'Theirs', 'Ġtheirs', 'ĠTheirs',
|
29 |
+
}
|
30 |
+
|
31 |
+
|
32 |
+
def count_tokens(tokenizer, text: str) -> int:
|
33 |
+
""" return number of tokens in string """
|
34 |
+
return len(tokenizer(text)['input_ids'])
|
35 |
+
|
36 |
+
|
37 |
+
def text_to_token_names(tokenizer, text: str) -> list[str]:
|
38 |
+
inputs = tokenizer(text)
|
39 |
+
ref_tokens = []
|
40 |
+
for id in inputs["input_ids"]:
|
41 |
+
token = tokenizer._convert_id_to_token(id)
|
42 |
+
ref_tokens.append(token)
|
43 |
+
return ref_tokens
|
44 |
+
|
45 |
+
|
46 |
+
def text_to_token_ids(tokenizer, text: str) -> list[str]:
|
47 |
+
return tokenizer(text)["input_ids"]
|
48 |
+
|
49 |
+
|
50 |
+
def has_at_least_one_pronoun(tokenizer, text: str) -> bool:
|
51 |
+
token_names = text_to_token_names(tokenizer, text)
|
52 |
+
for pronoun_token in PRONOUN_TOKENS:
|
53 |
+
if pronoun_token in token_names:
|
54 |
+
return True
|
55 |
+
return False
|
56 |
+
|
57 |
+
|
58 |
+
def chunk_to_contexts(tokenizer, text: str):
|
59 |
+
lines = text.splitlines()
|
60 |
+
|
61 |
+
for i in range(len(lines)):
|
62 |
+
|
63 |
+
# add lines before and after for context
|
64 |
+
ctx = [lines[i]]
|
65 |
+
focus_line_idx = 0
|
66 |
+
before_line_idx = i
|
67 |
+
after_line_idx = i
|
68 |
+
|
69 |
+
# try adding lines as context until we reach MAX_CTX_LEN
|
70 |
+
while True:
|
71 |
+
|
72 |
+
something_done = False
|
73 |
+
|
74 |
+
# try adding a line before
|
75 |
+
if before_line_idx - 1 >= 0:
|
76 |
+
before_candidate = [lines[before_line_idx - 1]] + ctx
|
77 |
+
assert len(before_candidate) == len(ctx) + 1
|
78 |
+
if count_tokens(tokenizer, "\n".join(before_candidate)) < MAX_CTX_LEN:
|
79 |
+
ctx = before_candidate
|
80 |
+
focus_line_idx += 1
|
81 |
+
before_line_idx -= 1
|
82 |
+
something_done = True
|
83 |
+
|
84 |
+
# try adding a line after
|
85 |
+
if after_line_idx + 1 < len(lines):
|
86 |
+
# after_candidate = ctx + "\n" + lines[after_line_idx + 1]
|
87 |
+
after_candidate = ctx + [lines[after_line_idx + 1]]
|
88 |
+
if count_tokens(tokenizer, "\n".join(after_candidate)) < MAX_CTX_LEN:
|
89 |
+
ctx = after_candidate
|
90 |
+
after_line_idx += 1
|
91 |
+
something_done = True
|
92 |
+
|
93 |
+
# if we can't add any line, we're done
|
94 |
+
if not something_done:
|
95 |
+
break
|
96 |
+
|
97 |
+
assert len("".join(f"{x}\n" for x in ctx).splitlines()) == len(ctx)
|
98 |
+
|
99 |
+
yield "".join(f"{x}\n" for x in ctx), focus_line_idx
|
100 |
+
|
101 |
+
|
102 |
+
def mask_pronouns(tokenizer: RobertaTokenizerFast, text: str) -> tuple[str, list[str]]:
|
103 |
+
""" replaces all pronouns in text with <mask> """
|
104 |
+
token_names = text_to_token_names(tokenizer, text)
|
105 |
+
|
106 |
+
masked_token_names = []
|
107 |
+
original_pronouns = []
|
108 |
+
|
109 |
+
for token_name in token_names:
|
110 |
+
if token_name in PRONOUN_TOKENS:
|
111 |
+
masked_token_names.append(tokenizer.mask_token)
|
112 |
+
original_pronouns.append(token_name)
|
113 |
+
else:
|
114 |
+
masked_token_names.append(token_name)
|
115 |
+
|
116 |
+
masked_text = tokenizer.decode(tokenizer.convert_tokens_to_ids(masked_token_names), skip_special_tokens=False)
|
117 |
+
# remove start and end tokens
|
118 |
+
return masked_text[len(tokenizer.bos_token):-len(tokenizer.eos_token)], original_pronouns
|
119 |
+
|
120 |
+
|
121 |
+
def uncase_token(token_name: str) -> str:
|
122 |
+
token_name = token_name.replace(' ', '')
|
123 |
+
token_name = token_name.replace(SPACE_PREFIX, '')
|
124 |
+
return token_name.lower()
|
125 |
+
|
126 |
+
|
127 |
+
def uncase_mask_result(mask_result):
|
128 |
+
uncased_token_probs = {uncase_token(k): 0 for k in PRONOUN_TOKENS}
|
129 |
+
for guess in mask_result:
|
130 |
+
uncased_token_str = uncase_token(guess['token_str'])
|
131 |
+
if uncased_token_str not in uncased_token_probs:
|
132 |
+
continue
|
133 |
+
uncased_token_probs[uncased_token_str] += guess['score']
|
134 |
+
return uncased_token_probs
|
135 |
+
|
136 |
+
|
137 |
+
def case_token_like(best_token_uncased: str, original_token: str, best_token_cased_str: str) -> str:
|
138 |
+
"""
|
139 |
+
:param best_token_uncased: the uncased, unspaced token that's the best match
|
140 |
+
:param original_token: the original token we are replacing
|
141 |
+
:param best_token_cased_str: the token str that's the best match. used for some cap
|
142 |
+
:return:
|
143 |
+
"""
|
144 |
+
space = (SPACE_PREFIX == original_token[0]) or (' ' == original_token[0])
|
145 |
+
cap = original_token[1 if space else 0].isupper()
|
146 |
+
if best_token_uncased == 'i':
|
147 |
+
cap = True
|
148 |
+
# if the original token was 'I', we can't use it for cap info
|
149 |
+
if original_token in ['I', 'ĠI']:
|
150 |
+
cap = best_token_cased_str.strip()[0].isupper()
|
151 |
+
if cap:
|
152 |
+
best_token_uncased = best_token_uncased[0].upper() + best_token_uncased[1:]
|
153 |
+
if space:
|
154 |
+
best_token_uncased = ' ' + best_token_uncased
|
155 |
+
return best_token_uncased
|
156 |
+
|
157 |
+
|
158 |
+
def fix_pronouns_in_text(
|
159 |
+
unmasker: FillMaskPipeline,
|
160 |
+
tokenizer,
|
161 |
+
text: str,
|
162 |
+
alpha: float = 0.05,
|
163 |
+
use_tqdm: bool = False,
|
164 |
+
tqdm_kwargs=None
|
165 |
+
) -> str:
|
166 |
+
"""
|
167 |
+
Fixes pronouns in MTL text
|
168 |
+
:param unmasker: unmasker pipeline
|
169 |
+
:param tokenizer: model tokenizer
|
170 |
+
:param text: text to fix
|
171 |
+
:param alpha: only replace the existing pronouns with probability less than alpha
|
172 |
+
:param use_tqdm: show tqdm progress bar
|
173 |
+
:param tqdm_kwargs: any tqdm args
|
174 |
+
:return: the fixed text
|
175 |
+
"""
|
176 |
+
if tqdm_kwargs is None:
|
177 |
+
tqdm_kwargs = {}
|
178 |
+
|
179 |
+
fixed_lines = []
|
180 |
+
ctxs = list(chunk_to_contexts(tokenizer, text))
|
181 |
+
ctxs_iter = tqdm(ctxs, smoothing=0.0, desc="Fixing pronouns", **tqdm_kwargs) if use_tqdm else ctxs
|
182 |
+
|
183 |
+
for ctx, focus_line_idx in ctxs_iter:
|
184 |
+
|
185 |
+
ctx_lines = ctx.splitlines()
|
186 |
+
focus_line = ctx_lines[focus_line_idx]
|
187 |
+
|
188 |
+
# we can skip focusing on lines without a pronoun
|
189 |
+
if not has_at_least_one_pronoun(tokenizer, focus_line):
|
190 |
+
fixed_lines.append(focus_line)
|
191 |
+
continue
|
192 |
+
|
193 |
+
# mask all pronouns
|
194 |
+
masked_ctx, original_pronouns = mask_pronouns(tokenizer, ctx)
|
195 |
+
|
196 |
+
# unmask pronouns
|
197 |
+
mask_results = unmasker(masked_ctx)
|
198 |
+
if isinstance(mask_results[0], dict):
|
199 |
+
mask_results = [mask_results]
|
200 |
+
|
201 |
+
unmasked_ctx = masked_ctx
|
202 |
+
|
203 |
+
for i, mask_result in enumerate(mask_results):
|
204 |
+
original_pronoun = original_pronouns[i]
|
205 |
+
uncased_original = uncase_token(original_pronoun)
|
206 |
+
uncased_result = uncase_mask_result(mask_result)
|
207 |
+
|
208 |
+
# if what was there doesn't make any sense, replace it
|
209 |
+
if uncased_result[uncased_original] < alpha:
|
210 |
+
best_uncased_pronoun = max(uncased_result, key=uncased_result.get)
|
211 |
+
# TODO: ensure correct type, possessive, adj, subject
|
212 |
+
best_cased_pronoun = case_token_like(best_uncased_pronoun, original_pronoun, mask_result[0]['token_str'])
|
213 |
+
unmasked_ctx = unmasked_ctx.replace(tokenizer.mask_token, best_cased_pronoun, 1)
|
214 |
+
else:
|
215 |
+
unmasked_ctx = unmasked_ctx.replace(tokenizer.mask_token, original_pronoun.replace(SPACE_PREFIX, ' '), 1)
|
216 |
+
|
217 |
+
fixed_lines.append(unmasked_ctx.splitlines()[focus_line_idx])
|
218 |
+
|
219 |
+
return "\n".join(fixed_lines)
|