File size: 4,454 Bytes
987c068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
license: apache-2.0
base_model: vietgpt/bert-30M-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert-30M-uncased-classification-fqa
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-30M-uncased-classification-fqa

This model is a fine-tuned version of [vietgpt/bert-30M-uncased](https://huggingface.co/vietgpt/bert-30M-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8275
- Accuracy: 0.9538

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 110  | 5.2109          | 0.0051   |
| No log        | 2.0   | 220  | 5.2109          | 0.0      |
| No log        | 3.0   | 330  | 5.1842          | 0.0      |
| No log        | 4.0   | 440  | 5.0942          | 0.0256   |
| 5.141         | 5.0   | 550  | 4.8190          | 0.0615   |
| 5.141         | 6.0   | 660  | 4.5678          | 0.1128   |
| 5.141         | 7.0   | 770  | 4.3158          | 0.2205   |
| 5.141         | 8.0   | 880  | 4.0876          | 0.3333   |
| 5.141         | 9.0   | 990  | 3.8774          | 0.4410   |
| 4.3509        | 10.0  | 1100 | 3.6849          | 0.5179   |
| 4.3509        | 11.0  | 1210 | 3.5020          | 0.6103   |
| 4.3509        | 12.0  | 1320 | 3.3304          | 0.6718   |
| 4.3509        | 13.0  | 1430 | 3.1628          | 0.7026   |
| 3.3612        | 14.0  | 1540 | 3.0022          | 0.7692   |
| 3.3612        | 15.0  | 1650 | 2.8528          | 0.7897   |
| 3.3612        | 16.0  | 1760 | 2.7042          | 0.8051   |
| 3.3612        | 17.0  | 1870 | 2.5607          | 0.8205   |
| 3.3612        | 18.0  | 1980 | 2.4300          | 0.8359   |
| 2.5735        | 19.0  | 2090 | 2.3086          | 0.8462   |
| 2.5735        | 20.0  | 2200 | 2.1888          | 0.8462   |
| 2.5735        | 21.0  | 2310 | 2.0762          | 0.8667   |
| 2.5735        | 22.0  | 2420 | 1.9736          | 0.8718   |
| 1.9651        | 23.0  | 2530 | 1.8741          | 0.8718   |
| 1.9651        | 24.0  | 2640 | 1.7797          | 0.9026   |
| 1.9651        | 25.0  | 2750 | 1.6888          | 0.9077   |
| 1.9651        | 26.0  | 2860 | 1.6092          | 0.9128   |
| 1.9651        | 27.0  | 2970 | 1.5296          | 0.9128   |
| 1.5059        | 28.0  | 3080 | 1.4617          | 0.9179   |
| 1.5059        | 29.0  | 3190 | 1.3951          | 0.9179   |
| 1.5059        | 30.0  | 3300 | 1.3362          | 0.9179   |
| 1.5059        | 31.0  | 3410 | 1.2752          | 0.9179   |
| 1.1862        | 32.0  | 3520 | 1.2268          | 0.9179   |
| 1.1862        | 33.0  | 3630 | 1.1743          | 0.9179   |
| 1.1862        | 34.0  | 3740 | 1.1333          | 0.9231   |
| 1.1862        | 35.0  | 3850 | 1.0918          | 0.9282   |
| 1.1862        | 36.0  | 3960 | 1.0535          | 0.9385   |
| 0.9586        | 37.0  | 4070 | 1.0206          | 0.9385   |
| 0.9586        | 38.0  | 4180 | 0.9899          | 0.9333   |
| 0.9586        | 39.0  | 4290 | 0.9638          | 0.9385   |
| 0.9586        | 40.0  | 4400 | 0.9418          | 0.9436   |
| 0.8104        | 41.0  | 4510 | 0.9163          | 0.9436   |
| 0.8104        | 42.0  | 4620 | 0.8983          | 0.9436   |
| 0.8104        | 43.0  | 4730 | 0.8811          | 0.9487   |
| 0.8104        | 44.0  | 4840 | 0.8657          | 0.9538   |
| 0.8104        | 45.0  | 4950 | 0.8551          | 0.9538   |
| 0.7164        | 46.0  | 5060 | 0.8448          | 0.9538   |
| 0.7164        | 47.0  | 5170 | 0.8384          | 0.9487   |
| 0.7164        | 48.0  | 5280 | 0.8326          | 0.9538   |
| 0.7164        | 49.0  | 5390 | 0.8289          | 0.9538   |
| 0.6757        | 50.0  | 5500 | 0.8275          | 0.9538   |


### Framework versions

- Transformers 4.37.1
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1