a2c-PandaReachDense-v2 / config.json
thackerhelik's picture
Initial commit
93aeab4
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5565cda5f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5565cd5e00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 3000000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686061183192334868, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAYKvUPp8RFrolbg4/YKvUPp8RFrolbg4/YKvUPp8RFrolbg4/YKvUPp8RFrolbg4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9GCgPkQhTb+K/lq/5/KqvRu93z6AqKE9Ao6bv+vPwj+6Mwq9pSnFv9dhdz0CQp6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABgq9Q+nxEWuiVuDj8i5Lc9iBp6uvz6kT1gq9Q+nxEWuiVuDj8i5Lc9iBp6uvz6kT1gq9Q+nxEWuiVuDj8i5Lc9iBp6uvz6kT1gq9Q+nxEWuiVuDj8i5Lc9iBp6uvz6kT2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.41537 -0.00057247 0.5563682 ]\n [ 0.41537 -0.00057247 0.5563682 ]\n [ 0.41537 -0.00057247 0.5563682 ]\n [ 0.41537 -0.00057247 0.5563682 ]]", "desired_goal": "[[ 0.3132397 -0.80128884 -0.85544646]\n [-0.08347111 0.43698964 0.07893467]\n [-1.2152712 1.5219702 -0.03374074]\n [-1.5403334 0.06039604 -1.2363894 ]]", "observation": "[[ 0.41537 -0.00057247 0.5563682 0.0897906 -0.00095407 0.0712795 ]\n [ 0.41537 -0.00057247 0.5563682 0.0897906 -0.00095407 0.0712795 ]\n [ 0.41537 -0.00057247 0.5563682 0.0897906 -0.00095407 0.0712795 ]\n [ 0.41537 -0.00057247 0.5563682 0.0897906 -0.00095407 0.0712795 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxBiYvRfXtDtkfm0+kyLDvZ9n8T0FBoo+VOI9vW67Cj58QhI+5hs+vFSt5j3C1og+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.07426599 0.0055188 0.23192745]\n [-0.09528079 0.11787342 0.26957718]\n [-0.04635842 0.13548061 0.14283174]\n [-0.01160333 0.11263528 0.26726347]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFlCop4/A4b+UhpRSlIwBbJRLMowBdJRHQMCj6Mzl90B1fZQoaAZoCWgPQwidmzbjNETUv5SGlFKUaBVLMmgWR0DAo9opH7P6dX2UKGgGaAloD0MIge1gxD4B77+UhpRSlGgVSzJoFkdAwKPLU83dbnV9lChoBmgJaA9DCAvUYvAwLfK/lIaUUpRoFUsyaBZHQMCjuN1hb4d1fZQoaAZoCWgPQwhZiXlW0orXv5SGlFKUaBVLMmgWR0DApCr/sE7odX2UKGgGaAloD0MIMlpHVRME8b+UhpRSlGgVSzJoFkdAwKQceEIw/XV9lChoBmgJaA9DCLU3+MJkKuC/lIaUUpRoFUsyaBZHQMCkDaQFLWZ1fZQoaAZoCWgPQwhNh07PuzHkv5SGlFKUaBVLMmgWR0DAo/sjTrmhdX2UKGgGaAloD0MIPnjt0obD2L+UhpRSlGgVSzJoFkdAwKRmHwgDBHV9lChoBmgJaA9DCMr8o2/SNOG/lIaUUpRoFUsyaBZHQMCkV3RXwLF1fZQoaAZoCWgPQwi9NEWA07vgv5SGlFKUaBVLMmgWR0DApEiVrylOdX2UKGgGaAloD0MIJlEv+DSn4b+UhpRSlGgVSzJoFkdAwKQ2CCBf8nV9lChoBmgJaA9DCFTJAFDFDee/lIaUUpRoFUsyaBZHQMCko3hn8Kp1fZQoaAZoCWgPQwiwARHiytnfv5SGlFKUaBVLMmgWR0DApJTLU1AJdX2UKGgGaAloD0MIlfHvMy4c2r+UhpRSlGgVSzJoFkdAwKSF8iwB53V9lChoBmgJaA9DCOLNGryvyuS/lIaUUpRoFUsyaBZHQMCkc22PT5R1fZQoaAZoCWgPQwgTChFwCFXov5SGlFKUaBVLMmgWR0DApOHszEaVdX2UKGgGaAloD0MIIehoVUs66L+UhpRSlGgVSzJoFkdAwKTTRrJr+HV9lChoBmgJaA9DCGg+527XS+2/lIaUUpRoFUsyaBZHQMCkxGgSOBF1fZQoaAZoCWgPQwhBZ9Km6h7rv5SGlFKUaBVLMmgWR0DApLHcN6PbdX2UKGgGaAloD0MIwocSLXn88L+UhpRSlGgVSzJoFkdAwKUfjfek6HV9lChoBmgJaA9DCGbdPxaiQ+C/lIaUUpRoFUsyaBZHQMClEOXE61d1fZQoaAZoCWgPQwg4pFGBk23pv5SGlFKUaBVLMmgWR0DApQISUTtcdX2UKGgGaAloD0MIjPM3oRCB47+UhpRSlGgVSzJoFkdAwKTvjPv8ZXV9lChoBmgJaA9DCCCZDp2ed96/lIaUUpRoFUsyaBZHQMClXL3Cbc51fZQoaAZoCWgPQwjpRIKpZtbgv5SGlFKUaBVLMmgWR0DApU4XsPatdX2UKGgGaAloD0MIgNWRI50B8r+UhpRSlGgVSzJoFkdAwKU/QQcxTXV9lChoBmgJaA9DCHvct1onru2/lIaUUpRoFUsyaBZHQMClLLGR3eN1fZQoaAZoCWgPQwgC1xUzwtvov5SGlFKUaBVLMmgWR0DApZqlzltCdX2UKGgGaAloD0MIABsQIa6c4r+UhpRSlGgVSzJoFkdAwKWL+T/yXnV9lChoBmgJaA9DCMqJdhVSfum/lIaUUpRoFUsyaBZHQMClfSQxN7B1fZQoaAZoCWgPQwivX7Abti3Tv5SGlFKUaBVLMmgWR0DApWqiAUcodX2UKGgGaAloD0MIhBH7BFAM57+UhpRSlGgVSzJoFkdAwKXWcbR4QnV9lChoBmgJaA9DCJjaUgd5veG/lIaUUpRoFUsyaBZHQMClx8W0qpd1fZQoaAZoCWgPQwiuRQvQtprqv5SGlFKUaBVLMmgWR0DApbjjLjgidX2UKGgGaAloD0MI2dDN/kC54L+UhpRSlGgVSzJoFkdAwKWmXgtOEnV9lChoBmgJaA9DCNeFH5xPnfS/lIaUUpRoFUsyaBZHQMCmFadDpkh1fZQoaAZoCWgPQwgH0sWmlULcv5SGlFKUaBVLMmgWR0DApgc+V1OkdX2UKGgGaAloD0MIMC3qk9xh17+UhpRSlGgVSzJoFkdAwKX4hX8wYnV9lChoBmgJaA9DCIwv2uOF9Oa/lIaUUpRoFUsyaBZHQMCl5gcLjPx1fZQoaAZoCWgPQwhkeVc9YB7ev5SGlFKUaBVLMmgWR0DAplFY4hlldX2UKGgGaAloD0MI/KvHfat137+UhpRSlGgVSzJoFkdAwKZCq94/vHV9lChoBmgJaA9DCFInoImw4ea/lIaUUpRoFUsyaBZHQMCmM84o7V91fZQoaAZoCWgPQwjT3uALk6njv5SGlFKUaBVLMmgWR0DApiFNHpbEdX2UKGgGaAloD0MIGjVfJR+78L+UhpRSlGgVSzJoFkdAwKaPpTMq0HV9lChoBmgJaA9DCEXwv5XsWOO/lIaUUpRoFUsyaBZHQMCmgP9kz411fZQoaAZoCWgPQwhl5CzsaQfmv5SGlFKUaBVLMmgWR0DApnIq7ROUdX2UKGgGaAloD0MIowT9hR4x5r+UhpRSlGgVSzJoFkdAwKZfprULD3V9lChoBmgJaA9DCPUqMjogieC/lIaUUpRoFUsyaBZHQMCmzsCLdep1fZQoaAZoCWgPQwipMoy7QTT0v5SGlFKUaBVLMmgWR0DApsAV0tAcdX2UKGgGaAloD0MIml/NAYK55b+UhpRSlGgVSzJoFkdAwKaxM495hXV9lChoBmgJaA9DCAagUbr0L+u/lIaUUpRoFUsyaBZHQMCmnqTr3TN1fZQoaAZoCWgPQwito6oJom7uv5SGlFKUaBVLMmgWR0DApxHukUKzdX2UKGgGaAloD0MIp3oy/+hb97+UhpRSlGgVSzJoFkdAwKcDa8Hv+nV9lChoBmgJaA9DCKYnLPGAsuO/lIaUUpRoFUsyaBZHQMCm9JfYzzp1fZQoaAZoCWgPQwjtm/urx/3nv5SGlFKUaBVLMmgWR0DApuIXKr7wdX2UKGgGaAloD0MIP+JXrOGi5L+UhpRSlGgVSzJoFkdAwKdwMzdk8XV9lChoBmgJaA9DCMf2WtB7Y9u/lIaUUpRoFUsyaBZHQMCnYaCDmKZ1fZQoaAZoCWgPQwiV88Xei2/zv5SGlFKUaBVLMmgWR0DAp1MFUyYYdX2UKGgGaAloD0MIe9egL7098b+UhpRSlGgVSzJoFkdAwKdAo86mwnV9lChoBmgJaA9DCLRaYI+JlNG/lIaUUpRoFUsyaBZHQMCn02dNFjN1fZQoaAZoCWgPQwjC3O7lPjnkv5SGlFKUaBVLMmgWR0DAp8TV+Zw5dX2UKGgGaAloD0MI7Eyh8xq74L+UhpRSlGgVSzJoFkdAwKe2G1x82XV9lChoBmgJaA9DCOj2ksZoHfe/lIaUUpRoFUsyaBZHQMCno7QLNOd1fZQoaAZoCWgPQwiQMAxYclXwv5SGlFKUaBVLMmgWR0DAqDijnFHbdX2UKGgGaAloD0MIisxc4PJY+b+UhpRSlGgVSzJoFkdAwKgqNWluWXV9lChoBmgJaA9DCD3wMVhxKuq/lIaUUpRoFUsyaBZHQMCoG5O8Cgd1fZQoaAZoCWgPQwjk2lAxzt/gv5SGlFKUaBVLMmgWR0DAqAkrI5o5dX2UKGgGaAloD0MIyhe0kIBR8L+UhpRSlGgVSzJoFkdAwKilfm9xqHV9lChoBmgJaA9DCPqYDwh0Juy/lIaUUpRoFUsyaBZHQMColyAhB7h1fZQoaAZoCWgPQwgaa39ne3Tyv5SGlFKUaBVLMmgWR0DAqIhuIhyKdX2UKGgGaAloD0MIFCaMZmV767+UhpRSlGgVSzJoFkdAwKh2E1VHWnV9lChoBmgJaA9DCPbP04BB0uG/lIaUUpRoFUsyaBZHQMCpIzodMkB1fZQoaAZoCWgPQwjkLOxphz/ov5SGlFKUaBVLMmgWR0DAqRTp5eJIdX2UKGgGaAloD0MIJGJKJNHL6r+UhpRSlGgVSzJoFkdAwKkGYvWYnnV9lChoBmgJaA9DCIdu9gfKbeO/lIaUUpRoFUsyaBZHQMCo9HIIWxh1fZQoaAZoCWgPQwg5l+Kqsu/hv5SGlFKUaBVLMmgWR0DAqY+/1xsEdX2UKGgGaAloD0MIOSuiJvp84L+UhpRSlGgVSzJoFkdAwKmBVEuxr3V9lChoBmgJaA9DCDs3bcZpCOm/lIaUUpRoFUsyaBZHQMCpcrpA2Q51fZQoaAZoCWgPQwguxsA6jh/lv5SGlFKUaBVLMmgWR0DAqWBhYvFndX2UKGgGaAloD0MITKWfcHbr57+UhpRSlGgVSzJoFkdAwKnumuTzNHV9lChoBmgJaA9DCG5OJQNAFd+/lIaUUpRoFUsyaBZHQMCp3/7SApd1fZQoaAZoCWgPQwiY4NQHknfev5SGlFKUaBVLMmgWR0DAqdEmplz2dX2UKGgGaAloD0MIb4RFRZxO7r+UhpRSlGgVSzJoFkdAwKm+nk1dgXV9lChoBmgJaA9DCDtSfecXpeC/lIaUUpRoFUsyaBZHQMCqL6kyk9F1fZQoaAZoCWgPQwg2yY/4Fevjv5SGlFKUaBVLMmgWR0DAqiEBXCCSdX2UKGgGaAloD0MIcOoDyTsH4L+UhpRSlGgVSzJoFkdAwKoSNlRP43V9lChoBmgJaA9DCDlgV5OnrNi/lIaUUpRoFUsyaBZHQMCp/699MK11fZQoaAZoCWgPQwijkjoBTQTqv5SGlFKUaBVLMmgWR0DAqm/1UVBVdX2UKGgGaAloD0MIlZnS+lsC2b+UhpRSlGgVSzJoFkdAwKphUd7v5XV9lChoBmgJaA9DCAskKH6MOeG/lIaUUpRoFUsyaBZHQMCqUnSfDk51fZQoaAZoCWgPQwgPKnEd4wrzv5SGlFKUaBVLMmgWR0DAqj/tx+8XdX2UKGgGaAloD0MIl445z9gX6r+UhpRSlGgVSzJoFkdAwKqs88s+V3V9lChoBmgJaA9DCJRrCmR2FvC/lIaUUpRoFUsyaBZHQMCqnkc0cfh1fZQoaAZoCWgPQwjrbp7qkJvev5SGlFKUaBVLMmgWR0DAqo9q+JxedX2UKGgGaAloD0MIppvEILDy4r+UhpRSlGgVSzJoFkdAwKp84ZuQ63V9lChoBmgJaA9DCNnMIamFEuy/lIaUUpRoFUsyaBZHQMCq68W9DhN1fZQoaAZoCWgPQwgpPdNLjOXnv5SGlFKUaBVLMmgWR0DAqt0ajvd/dX2UKGgGaAloD0MIEHnL1Y/N5b+UhpRSlGgVSzJoFkdAwKrOThYNiHV9lChoBmgJaA9DCIRGsHH9O+q/lIaUUpRoFUsyaBZHQMCqu9HDrJN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 93750, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}