File size: 7,365 Bytes
926336c d6b7675 926336c 7f4685f e7bbae2 7f4685f e7bbae2 7f4685f e7bbae2 7f4685f 6152eb7 7f4685f e7bbae2 7f4685f e7bbae2 7f4685f e7bbae2 7f4685f e7bbae2 7f4685f e7bbae2 7f4685f 14221a5 e7bbae2 14221a5 6152eb7 14221a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
---
base_model: google/gemma-2-9b
tags:
- text-generation-inference
- transformers
- torch
- mlx_lm
license: apache-2.0
language:
- en
---
# 推論用コード
Hugging Faceにアップロードしたモデルを用いてELYZA-tasks-100-TVの出力を得るためのコードです。
このコードで生成されたjsonlファイルは課題の成果として提出可能なフォーマットになっております。
```
!pip install -U bitsandbytes
!pip install -U transformers
!pip install -U accelerate
!pip install -U datasets
!pip install -U peft
```
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import json
from pathlib import Path
from typing import Dict, Any, Optional
from tqdm import tqdm
import time
from datetime import datetime
class GPUPredictions:
def __init__(self,
model_id="testmoto/gemma-2-lora-dpo-moe-1",
adapter_path=None,
max_tokens=1024,
temp=0.0,
top_p=0.9,
seed=3407):
self.model_id = model_id
self.adapter_path = adapter_path
self.max_tokens = max_tokens
self.temp = temp
self.top_p = top_p
self.seed = seed
print(f"Loading model: {model_id}")
torch.cuda.empty_cache()
# GPU設定
n_gpus = torch.cuda.device_count()
max_memory = {i: "20GiB" for i in range(n_gpus)}
max_memory["cpu"] = "100GiB"
# トークナイザーの初期化
self.tokenizer = AutoTokenizer.from_pretrained(
model_id,
trust_remote_code=True
)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
try:
self.model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto",
max_memory=max_memory,
low_cpu_mem_usage=True,
trust_remote_code=True
)
except Exception as e:
print(f"First loading attempt failed: {str(e)}")
print("Trying alternative loading method...")
self.model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="balanced",
low_cpu_mem_usage=True,
trust_remote_code=True
)
if adapter_path:
print(f"Loading adapter from {adapter_path}")
self.model.load_adapter(adapter_path)
# Generate設定
self.gen_config = {
"max_new_tokens": max_tokens,
"temperature": temp,
"top_p": top_p,
"do_sample": temp > 0,
"pad_token_id": self.tokenizer.pad_token_id,
"eos_token_id": self.tokenizer.eos_token_id
}
print("Model loaded successfully")
self.device = next(self.model.parameters()).device
print(f"Model is on device: {self.device}")
@torch.inference_mode()
def generate_response(self, prompt: str) -> str:
"""効率的な応答生成"""
try:
inputs = self.tokenizer(prompt, return_tensors="pt", padding=True)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.cuda.amp.autocast():
outputs = self.model.generate(
**inputs,
**self.gen_config
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
if prompt in response:
response = response[len(prompt):].strip()
return response
except Exception as e:
print(f"Error during generation: {str(e)}")
raise
def load_tasks(self, file_path: str) -> list:
"""ELYZAタスクの読み込み"""
datasets = []
with open(file_path, "r") as f:
for line in f:
if line.strip():
datasets.append(json.loads(line.strip()))
return datasets
def run_inference(self, input_file="elyza-tasks-100-TV_0.jsonl", output_file="gpu_results.jsonl"):
"""バッチ処理による効率的な推論実行"""
tasks = self.load_tasks(input_file)
results = []
start_time = time.time()
execution_date = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print(f"Execution started at: {execution_date}")
print(f"Total tasks: {len(tasks)}")
print("-" * 50)
for task in tqdm(tasks, desc="Processing tasks"):
task_start_time = time.time()
prompt = f"""### Instruction:
{task['input']}
<eos>
### Response: """
try:
response = self.generate_response(prompt)
try:
answer = response.split('### Response: ')[-1]
except:
answer = response
task_end_time = time.time()
task_duration = task_end_time - task_start_time
result = {
"task_id": task["task_id"],
"input": task["input"],
"output": answer
}
results.append(result)
print(f"\nTask {task['task_id']} completed in {task_duration:.2f} seconds")
print(f"Input: {task['input'][:100]}...")
print(f"Output: {answer[:100]}...")
print("-" * 50)
with open(output_file, 'a', encoding='utf-8') as f:
json.dump(result, f, ensure_ascii=False)
f.write('\n')
if task["task_id"] % 5 == 0:
torch.cuda.empty_cache()
except Exception as e:
print(f"Error processing task {task['task_id']}: {str(e)}")
continue
total_time = time.time() - start_time
avg_time = total_time / len(tasks)
summary = {
"execution_date": execution_date,
"total_tasks": len(tasks),
"total_time": round(total_time, 2),
"average_time_per_task": round(avg_time, 2),
"model_id": self.model_id,
"adapter_used": self.adapter_path is not None
}
print("\nExecution Summary:")
print(f"Total execution time: {total_time:.2f} seconds")
print(f"Average time per task: {avg_time:.2f} seconds")
print(f"Results saved to: {output_file}")
summary_file = output_file.replace('.jsonl', '_summary.json')
with open(summary_file, 'w', encoding='utf-8') as f:
json.dump(summary, f, ensure_ascii=False, indent=2)
return results
```
```
from GPUPredictions import GPUPredictions
predictor = GPUPredictions(
model_id="testmoto/gemma-2-lora-dpo-moe-1"
)
results = predictor.run_inference(
input_file="elyza-tasks-100-TV_0.jsonl",
output_file="llm_2024_elyza_tv_0.jsonl"
)
```
|