File size: 6,966 Bytes
7f4685f
 
 
e7bbae2
7f4685f
 
 
 
 
 
 
e7bbae2
7f4685f
 
 
 
 
 
 
 
 
e7bbae2
7f4685f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7bbae2
7f4685f
 
 
 
 
 
 
 
 
e7bbae2
7f4685f
 
 
e7bbae2
7f4685f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7bbae2
7f4685f
 
 
 
 
 
 
 
e7bbae2
7f4685f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7bbae2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# 推論用コード
Hugging Faceにアップロードしたモデルを用いてELYZA-tasks-100-TVの出力を得るためのコードです。 
このコードで生成されたjsonlファイルは課題の成果として提出可能なフォーマットになっております。

```
!pip install -U bitsandbytes
!pip install -U transformers
!pip install -U accelerate
!pip install -U datasets
!pip install -U peft
```

```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import json
from pathlib import Path
from typing import Dict, Any, Optional
from tqdm import tqdm
import time
from datetime import datetime

class GPUPredictions:
    def __init__(self,
                 model_id="testmoto/gemma-2-llm2024-01",
                 adapter_path=None,
                 max_tokens=1024,
                 temp=0.0,
                 top_p=0.9,
                 seed=3407):
        self.model_id = model_id
        self.adapter_path = adapter_path
        self.max_tokens = max_tokens
        self.temp = temp
        self.top_p = top_p
        self.seed = seed
        
        print(f"Loading model: {model_id}")
        torch.cuda.empty_cache()
        
        # GPU設定
        n_gpus = torch.cuda.device_count()
        max_memory = {i: "20GiB" for i in range(n_gpus)}
        max_memory["cpu"] = "100GiB"
        
        # トークナイザーの初期化
        self.tokenizer = AutoTokenizer.from_pretrained(
            model_id,
            trust_remote_code=True
        )
        if self.tokenizer.pad_token is None:
            self.tokenizer.pad_token = self.tokenizer.eos_token
        
        try:
            self.model = AutoModelForCausalLM.from_pretrained(
                model_id,
                torch_dtype=torch.float16,
                device_map="auto",
                max_memory=max_memory,
                low_cpu_mem_usage=True,
                trust_remote_code=True
            )
        except Exception as e:
            print(f"First loading attempt failed: {str(e)}")
            print("Trying alternative loading method...")
            self.model = AutoModelForCausalLM.from_pretrained(
                model_id,
                torch_dtype=torch.float16,
                device_map="balanced",
                low_cpu_mem_usage=True,
                trust_remote_code=True
            )
        
        if adapter_path:
            print(f"Loading adapter from {adapter_path}")
            self.model.load_adapter(adapter_path)

        # Generate設定
        self.gen_config = {
            "max_new_tokens": max_tokens,
            "temperature": temp,
            "top_p": top_p,
            "do_sample": temp > 0,
            "pad_token_id": self.tokenizer.pad_token_id,
            "eos_token_id": self.tokenizer.eos_token_id
        }

        print("Model loaded successfully")
        self.device = next(self.model.parameters()).device
        print(f"Model is on device: {self.device}")

    @torch.inference_mode()
    def generate_response(self, prompt: str) -> str:
        """効率的な応答生成"""
        try:
            inputs = self.tokenizer(prompt, return_tensors="pt", padding=True)
            inputs = {k: v.to(self.device) for k, v in inputs.items()}
            
            with torch.cuda.amp.autocast():
                outputs = self.model.generate(
                    **inputs,
                    **self.gen_config
                )
            
            response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
            
            if prompt in response:
                response = response[len(prompt):].strip()
            
            return response
            
        except Exception as e:
            print(f"Error during generation: {str(e)}")
            raise

    def load_tasks(self, file_path: str) -> list:
        """ELYZAタスクの読み込み"""
        datasets = []
        with open(file_path, "r") as f:
            for line in f:
                if line.strip():
                    datasets.append(json.loads(line.strip()))
        return datasets

    def run_inference(self, input_file="elyza-tasks-100-TV_0.jsonl", output_file="gpu_results.jsonl"):
        """バッチ処理による効率的な推論実行"""
        tasks = self.load_tasks(input_file)
        results = []
        
        start_time = time.time()
        execution_date = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        print(f"Execution started at: {execution_date}")
        print(f"Total tasks: {len(tasks)}")
        print("-" * 50)
        
        for task in tqdm(tasks, desc="Processing tasks"):
            task_start_time = time.time()
            
            prompt = f"""### Instruction: 
{task['input']}
<eos>
### Response: """
            
            try:
                response = self.generate_response(prompt)
                try:
                    answer = response.split('### Response: ')[-1]
                except:
                    answer = response
                
                task_end_time = time.time()
                task_duration = task_end_time - task_start_time
                
                result = {
                    "task_id": task["task_id"],
                    "input": task["input"],
                    "output": answer
                }
                results.append(result)
                
                print(f"\nTask {task['task_id']} completed in {task_duration:.2f} seconds")
                print(f"Input: {task['input'][:100]}...")
                print(f"Output: {answer[:100]}...")
                print("-" * 50)
                
                with open(output_file, 'a', encoding='utf-8') as f:
                    json.dump(result, f, ensure_ascii=False)
                    f.write('\n')
                
                if task["task_id"] % 5 == 0:
                    torch.cuda.empty_cache()
                
            except Exception as e:
                print(f"Error processing task {task['task_id']}: {str(e)}")
                continue
        
        total_time = time.time() - start_time
        avg_time = total_time / len(tasks)
        
        summary = {
            "execution_date": execution_date,
            "total_tasks": len(tasks),
            "total_time": round(total_time, 2),
            "average_time_per_task": round(avg_time, 2),
            "model_id": self.model_id,
            "adapter_used": self.adapter_path is not None
        }
        
        print("\nExecution Summary:")
        print(f"Total execution time: {total_time:.2f} seconds")
        print(f"Average time per task: {avg_time:.2f} seconds")
        print(f"Results saved to: {output_file}")
        
        summary_file = output_file.replace('.jsonl', '_summary.json')
        with open(summary_file, 'w', encoding='utf-8') as f:
            json.dump(summary, f, ensure_ascii=False, indent=2)
        
        return results
```