File size: 4,950 Bytes
6f08eef a842b44 91b350c a842b44 91b350c a842b44 91b350c a842b44 6f08eef a842b44 91b350c a842b44 6f08eef a842b44 6f08eef a842b44 6f08eef a842b44 6f08eef a842b44 6f08eef a842b44 6f08eef a842b44 6f08eef a842b44 6f08eef a842b44 6f08eef a842b44 6f08eef a842b44 6f08eef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
from scipy.spatial.distance import cdist
from scipy.optimize import linear_sum_assignment
import numpy as np
def preregister_mean_std(verts_to_transform, target_verts, single_scale=True):
mu_target = target_verts.mean(axis=0)
mu_in = verts_to_transform.mean(axis=0)
std_target = np.std(target_verts, axis=0)
std_in = np.std(verts_to_transform, axis=0)
if np.any(std_in == 0):
std_in[std_in == 0] = 1
if np.any(std_target == 0):
std_target[std_target == 0] = 1
if np.any(np.isnan(std_in)):
std_in[np.isnan(std_in)] = 1
if np.any(np.isnan(std_target)):
std_target[np.isnan(std_target)] = 1
if single_scale:
std_target = np.linalg.norm(std_target)
std_in = np.linalg.norm(std_in)
transformed_verts = (verts_to_transform - mu_in) / std_in
transformed_verts = transformed_verts * std_target + mu_target
return transformed_verts
def compute_WED(pd_vertices, pd_edges, gt_vertices, gt_edges, cv=-1/4, ce=1.0, normalized=True, preregister=True, single_scale=True):
'''The function computes the Wireframe Edge Distance (WED) between two graphs.
pd_vertices: list of predicted vertices
pd_edges: list of predicted edges
gt_vertices: list of ground truth vertices
gt_edges: list of ground truth edges
cv: vertex cost: if positive, the cost in centimeters of missing a vertex, if negative, multiplies diameter to compute cost (default is -1/2)
ce: edge cost (multiplier of the edge length for edge deletion and insertion, default is 1.0)
normalized: if True, the WED is normalized by the total length of the ground truth edges
preregister: if True, the predicted vertices have their mean and scale matched to the ground truth vertices
'''
# Vertex coordinates are in centimeters. When cv and ce are set to 100.0 and 1.0 respectively,
# missing a vertex is equivanlent predicting it 1 meter away from the ground truth vertex.
# This is equivalent to setting cv=1 and ce=1 when the vertex coordinates are in meters.
# When a negative cv value is set (the default behavior), cv is reset to 1/2 of the diameter of the ground truth wireframe.
pd_vertices = np.array(pd_vertices)
gt_vertices = np.array(gt_vertices)
if preregister:
pd_vertices = preregister_mean_std(pd_vertices, gt_vertices, single_scale=single_scale)
if cv < 0:
diameter = cdist(gt_vertices, gt_vertices).max()
# Cost of adding or deleting a vertex is set to -cv times the diameter of the ground truth wireframe
cv = -cv * diameter
elif cv == 0:
# Cost of adding or deleting a vertex is set to the average distance of the ground truth vertices from their mean
cv = np.linalg.norm(np.mean(gt_vertices, axis=0) - gt_vertices, axis=1).mean()
# Step 0: Prenormalize / preregister
pd_edges = np.array(pd_edges)
gt_edges = np.array(gt_edges)
# Step 1: Bipartite Matching
distances = cdist(pd_vertices, gt_vertices, metric='euclidean')
row_ind, col_ind = linear_sum_assignment(distances)
# Step 2: Vertex Translation
translation_costs = np.sum(distances[row_ind, col_ind])
# Additional: Vertex Deletion
unmatched_pd_indices = set(range(len(pd_vertices))) - set(row_ind)
deletion_costs = cv * len(unmatched_pd_indices)
# Step 3: Vertex Insertion
unmatched_gt_indices = set(range(len(gt_vertices))) - set(col_ind)
insertion_costs = cv * len(unmatched_gt_indices)
# Step 4: Edge Deletion and Insertion
updated_pd_edges = [(col_ind[np.where(row_ind == edge[0])[0][0]], col_ind[np.where(row_ind == edge[1])[0][0]]) for edge in pd_edges if edge[0] in row_ind and edge[1] in row_ind]
pd_edges_set = set(map(tuple, [set(edge) for edge in updated_pd_edges]))
gt_edges_set = set(map(tuple, [set(edge) for edge in gt_edges]))
# Delete edges not in ground truth
edges_to_delete = pd_edges_set - gt_edges_set
vert_tf = [np.where(col_ind == v)[0][0] if v in col_ind else 0 for v in range(len(gt_vertices))]
deletion_edge_costs = ce * sum(np.linalg.norm(pd_vertices[vert_tf[edge[0]]] - pd_vertices[vert_tf[edge[1]]]) for edge in edges_to_delete)
# Insert missing edges from ground truth
edges_to_insert = gt_edges_set - pd_edges_set
insertion_edge_costs = ce * sum(np.linalg.norm(gt_vertices[edge[0]] - gt_vertices[edge[1]]) for edge in edges_to_insert)
# Step 5: Calculation of WED
WED = translation_costs + deletion_costs + insertion_costs + deletion_edge_costs + insertion_edge_costs
if normalized:
total_length_of_gt_edges = np.linalg.norm((gt_vertices[gt_edges[:, 0]] - gt_vertices[gt_edges[:, 1]]), axis=1).sum()
WED = WED / total_length_of_gt_edges
# print ("Total length", total_length_of_gt_edges)
return WED |