File size: 6,317 Bytes
398b4ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ce47ff
 
398b4ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ce47ff
398b4ad
 
 
 
 
 
 
 
 
 
1988c3d
398b4ad
1988c3d
398b4ad
1988c3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
398b4ad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
---
license: other
base_model: "black-forest-labs/FLUX.1-dev"
tags:
  - flux
  - flux-diffusers
  - text-to-image
  - diffusers
  - simpletuner
  - lora
  - template:sd-lora
inference: true
widget:
- text: 'unconditional (blank prompt)'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_0_0.png
- text: 'a comic strip of garfield, by jim davis. the first panel has garfield saying Help!. the second panel has garfield saying My clungus is leaking! and the third panel has Odie saying uh oh!'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_1_0.png
- text: 'a comic strip by jim davis, showcasing odie in his full demonic form while garfield cowers in the background'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_2_0.png
- text: 'a picture of garfield in walmart, shopping amongst the real people'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_3_0.png
- text: 'A photo-realistic image of a cat'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_4_0.png
---

# simpletuner-lora

This is a LyCORIS adapter derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev).


The main validation prompt used during training was:



```
A photo-realistic image of a cat
```

## Validation settings
- CFG: `3.0`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `None`
- Seed: `42`
- Resolution: `1776x512`

Note: The validation settings are not necessarily the same as the [training settings](#training-settings).

You can find some example images in the following gallery:


<Gallery />

The text encoder **was not** trained.
You may reuse the base model text encoder for inference.


## Training settings

- Training epochs: 2
- Training steps: 2000
- Learning rate: 0.0001
- Effective batch size: 2
  - Micro-batch size: 2
  - Gradient accumulation steps: 1
  - Number of GPUs: 1
- Prediction type: flow-matching
- Rescaled betas zero SNR: False
- Optimizer: optimi-lion
- Precision: bf16
- Quantised: Yes: fp8-quanto
- Xformers: Not used
- LyCORIS Config:
```json
{
    "algo": "lokr",
    "multiplier": 1.0,
    "linear_dim": 10000,
    "linear_alpha": 1,
    "factor": 16,
    "apply_preset": {
        "target_module": [
            "Attention",
            "FeedForward"
        ],
        "module_algo_map": {
            "Attention": {
                "factor": 16
            },
            "FeedForward": {
                "factor": 8
            }
        }
    }
}
```

## Datasets

### garfield
- Repeats: 0
- Total number of images: 2206
- Total number of aspect buckets: 4
- Resolution: 512 px
- Cropped: False
- Crop style: None
- Crop aspect: None


## Inference


```python
import argparse
import torch
from helpers.models.flux.pipeline import FluxPipeline as DiffusionPipeline
from lycoris import create_lycoris_from_weights
from huggingface_hub import hf_hub_download

def generate_image(pipeline, prompt, output_file, num_inference_steps, width, height, guidance_scale, seed, device):
    # Set device
    pipeline.to(device)

    # Generate image
    generator = torch.Generator(device=device).manual_seed(seed)
    image = pipeline(
        prompt=prompt,
        num_inference_steps=num_inference_steps,
        generator=generator,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
    ).images[0]

    # Save image
    output_file = "output.png"
    image.save(output_file, format="PNG")
    print(f"Image saved as {output_file}")

def main():
    parser = argparse.ArgumentParser(description="Generate images using a custom diffusion pipeline with LoRA weights.")
    parser.add_argument("--model_id", type=str, default='black-forest-labs/FLUX.1-dev', help="Model ID from Hugging Face Hub.")
    parser.add_argument("--adapter_id", type=str, default='pytorch_lora_weights.safetensors', help="LoRA weights file.")
    parser.add_argument("--lora_scale", type=float, default=1.0, help="Scale for LoRA weights.")
    parser.add_argument("--output_file", type=str, default="output.png", help="Output file name for the generated image.")
    parser.add_argument("--num_inference_steps", type=int, default=30, help="Number of inference steps.")
    parser.add_argument("--guidance_scale", type=float, default=3.5, help="Guidance scale for the generation.")
    parser.add_argument("--seed", type=int, default=1641421826, help="Random seed for reproducibility.")
    parser.add_argument("--device", type=str, default='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu', help="Device to run the model on.")
    
    args = parser.parse_args()

    # Load model and weights
    hf_hub_download(repo_id="terminusresearch/flux-lokr-garfield-nomask", filename=args.adapter_id, local_dir="./")
    pipeline = DiffusionPipeline.from_pretrained(args.model_id, torch_dtype=torch.bfloat16)

    # Apply LoRA weights
    wrapper, _ = create_lycoris_from_weights(args.lora_scale, args.adapter_id, pipeline.transformer)
    wrapper.merge_to()

    print("Model loaded successfully. Ready to generate images.")
    
    while True:
        user_input = input("Enter a prompt or 'quit' to exit: ")
        if user_input.lower() == 'quit':
            break

        # Check for resolution command
        if user_input.startswith("resolution:"):
            resolution = user_input.split(":")[1]
            width, height = map(int, resolution.split("x"))
            print(f"Resolution set to {width}x{height}")
            continue

        prompt = user_input
        output_file = args.output_file.replace(".png", f"_{prompt.replace(' ', '_')}.png")

        # Use default or previously set resolution
        width = locals().get('width', 1024)
        height = locals().get('height', 1024)

        generate_image(
            pipeline=pipeline,
            prompt=prompt,
            output_file=output_file,
            num_inference_steps=args.num_inference_steps,
            width=width,
            height=height,
            guidance_scale=args.guidance_scale,
            seed=args.seed,
            device=args.device
        )

if __name__ == "__main__":
    main()
```