File size: 6,317 Bytes
398b4ad 1ce47ff 398b4ad 1ce47ff 398b4ad 1988c3d 398b4ad 1988c3d 398b4ad 1988c3d 398b4ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
---
license: other
base_model: "black-forest-labs/FLUX.1-dev"
tags:
- flux
- flux-diffusers
- text-to-image
- diffusers
- simpletuner
- lora
- template:sd-lora
inference: true
widget:
- text: 'unconditional (blank prompt)'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_0_0.png
- text: 'a comic strip of garfield, by jim davis. the first panel has garfield saying Help!. the second panel has garfield saying My clungus is leaking! and the third panel has Odie saying uh oh!'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_1_0.png
- text: 'a comic strip by jim davis, showcasing odie in his full demonic form while garfield cowers in the background'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_2_0.png
- text: 'a picture of garfield in walmart, shopping amongst the real people'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_3_0.png
- text: 'A photo-realistic image of a cat'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_4_0.png
---
# simpletuner-lora
This is a LyCORIS adapter derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev).
The main validation prompt used during training was:
```
A photo-realistic image of a cat
```
## Validation settings
- CFG: `3.0`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `None`
- Seed: `42`
- Resolution: `1776x512`
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
You can find some example images in the following gallery:
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 2
- Training steps: 2000
- Learning rate: 0.0001
- Effective batch size: 2
- Micro-batch size: 2
- Gradient accumulation steps: 1
- Number of GPUs: 1
- Prediction type: flow-matching
- Rescaled betas zero SNR: False
- Optimizer: optimi-lion
- Precision: bf16
- Quantised: Yes: fp8-quanto
- Xformers: Not used
- LyCORIS Config:
```json
{
"algo": "lokr",
"multiplier": 1.0,
"linear_dim": 10000,
"linear_alpha": 1,
"factor": 16,
"apply_preset": {
"target_module": [
"Attention",
"FeedForward"
],
"module_algo_map": {
"Attention": {
"factor": 16
},
"FeedForward": {
"factor": 8
}
}
}
}
```
## Datasets
### garfield
- Repeats: 0
- Total number of images: 2206
- Total number of aspect buckets: 4
- Resolution: 512 px
- Cropped: False
- Crop style: None
- Crop aspect: None
## Inference
```python
import argparse
import torch
from helpers.models.flux.pipeline import FluxPipeline as DiffusionPipeline
from lycoris import create_lycoris_from_weights
from huggingface_hub import hf_hub_download
def generate_image(pipeline, prompt, output_file, num_inference_steps, width, height, guidance_scale, seed, device):
# Set device
pipeline.to(device)
# Generate image
generator = torch.Generator(device=device).manual_seed(seed)
image = pipeline(
prompt=prompt,
num_inference_steps=num_inference_steps,
generator=generator,
width=width,
height=height,
guidance_scale=guidance_scale,
).images[0]
# Save image
output_file = "output.png"
image.save(output_file, format="PNG")
print(f"Image saved as {output_file}")
def main():
parser = argparse.ArgumentParser(description="Generate images using a custom diffusion pipeline with LoRA weights.")
parser.add_argument("--model_id", type=str, default='black-forest-labs/FLUX.1-dev', help="Model ID from Hugging Face Hub.")
parser.add_argument("--adapter_id", type=str, default='pytorch_lora_weights.safetensors', help="LoRA weights file.")
parser.add_argument("--lora_scale", type=float, default=1.0, help="Scale for LoRA weights.")
parser.add_argument("--output_file", type=str, default="output.png", help="Output file name for the generated image.")
parser.add_argument("--num_inference_steps", type=int, default=30, help="Number of inference steps.")
parser.add_argument("--guidance_scale", type=float, default=3.5, help="Guidance scale for the generation.")
parser.add_argument("--seed", type=int, default=1641421826, help="Random seed for reproducibility.")
parser.add_argument("--device", type=str, default='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu', help="Device to run the model on.")
args = parser.parse_args()
# Load model and weights
hf_hub_download(repo_id="terminusresearch/flux-lokr-garfield-nomask", filename=args.adapter_id, local_dir="./")
pipeline = DiffusionPipeline.from_pretrained(args.model_id, torch_dtype=torch.bfloat16)
# Apply LoRA weights
wrapper, _ = create_lycoris_from_weights(args.lora_scale, args.adapter_id, pipeline.transformer)
wrapper.merge_to()
print("Model loaded successfully. Ready to generate images.")
while True:
user_input = input("Enter a prompt or 'quit' to exit: ")
if user_input.lower() == 'quit':
break
# Check for resolution command
if user_input.startswith("resolution:"):
resolution = user_input.split(":")[1]
width, height = map(int, resolution.split("x"))
print(f"Resolution set to {width}x{height}")
continue
prompt = user_input
output_file = args.output_file.replace(".png", f"_{prompt.replace(' ', '_')}.png")
# Use default or previously set resolution
width = locals().get('width', 1024)
height = locals().get('height', 1024)
generate_image(
pipeline=pipeline,
prompt=prompt,
output_file=output_file,
num_inference_steps=args.num_inference_steps,
width=width,
height=height,
guidance_scale=args.guidance_scale,
seed=args.seed,
device=args.device
)
if __name__ == "__main__":
main()
```
|