dathudeptrai
commited on
Commit
ยท
6482e82
1
Parent(s):
cd8a09b
๐ Update config file.
Browse files- config.yml +85 -58
config.yml
CHANGED
@@ -1,59 +1,86 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
warmup_proportion: 0.02
|
19 |
-
weight_decay: 0.001
|
20 |
-
outdir: ./egs/ljspeech/exp/tacotron2.v1
|
21 |
-
remove_short_samples: true
|
22 |
-
resume: ./egs/ljspeech/exp/tacotron2.v1/checkpoints/ckpt-45000
|
23 |
-
save_interval_steps: 5000
|
24 |
-
schedule_decay_steps: 50000
|
25 |
-
start_ratio_value: 0.5
|
26 |
-
start_schedule_teacher_forcing: 250000
|
27 |
tacotron2_params:
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This is the hyperparameter configuration file for Tacotron2 v1.
|
2 |
+
# Please make sure this is adjusted for the LJSpeech dataset. If you want to
|
3 |
+
# apply to the other dataset, you might need to carefully change some parameters.
|
4 |
+
# This configuration performs 200k iters but 65k iters is enough to get a good models.
|
5 |
+
|
6 |
+
###########################################################
|
7 |
+
# FEATURE EXTRACTION SETTING #
|
8 |
+
###########################################################
|
9 |
+
hop_size: 256 # Hop size.
|
10 |
+
format: "npy"
|
11 |
+
|
12 |
+
|
13 |
+
###########################################################
|
14 |
+
# NETWORK ARCHITECTURE SETTING #
|
15 |
+
###########################################################
|
16 |
+
model_type: "tacotron2"
|
17 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
tacotron2_params:
|
19 |
+
dataset: ljspeech
|
20 |
+
embedding_hidden_size: 512
|
21 |
+
initializer_range: 0.02
|
22 |
+
embedding_dropout_prob: 0.1
|
23 |
+
n_speakers: 1
|
24 |
+
n_conv_encoder: 5
|
25 |
+
encoder_conv_filters: 512
|
26 |
+
encoder_conv_kernel_sizes: 5
|
27 |
+
encoder_conv_activation: 'relu'
|
28 |
+
encoder_conv_dropout_rate: 0.5
|
29 |
+
encoder_lstm_units: 256
|
30 |
+
n_prenet_layers: 2
|
31 |
+
prenet_units: 256
|
32 |
+
prenet_activation: 'relu'
|
33 |
+
prenet_dropout_rate: 0.5
|
34 |
+
n_lstm_decoder: 1
|
35 |
+
reduction_factor: 1
|
36 |
+
decoder_lstm_units: 1024
|
37 |
+
attention_dim: 128
|
38 |
+
attention_filters: 32
|
39 |
+
attention_kernel: 31
|
40 |
+
n_mels: 80
|
41 |
+
n_conv_postnet: 5
|
42 |
+
postnet_conv_filters: 512
|
43 |
+
postnet_conv_kernel_sizes: 5
|
44 |
+
postnet_dropout_rate: 0.1
|
45 |
+
attention_type: "lsa"
|
46 |
+
|
47 |
+
###########################################################
|
48 |
+
# DATA LOADER SETTING #
|
49 |
+
###########################################################
|
50 |
+
batch_size: 32 # Batch size for each GPU with assuming that gradient_accumulation_steps == 1.
|
51 |
+
remove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps.
|
52 |
+
allow_cache: true # Whether to allow cache in dataset. If true, it requires cpu memory.
|
53 |
+
mel_length_threshold: 32 # remove all targets has mel_length <= 32
|
54 |
+
is_shuffle: true # shuffle dataset after each epoch.
|
55 |
+
use_fixed_shapes: true # use_fixed_shapes for training (2x speed-up)
|
56 |
+
# refer (https://github.com/dathudeptrai/TensorflowTTS/issues/34#issuecomment-642309118)
|
57 |
+
|
58 |
+
###########################################################
|
59 |
+
# OPTIMIZER & SCHEDULER SETTING #
|
60 |
+
###########################################################
|
61 |
+
optimizer_params:
|
62 |
+
initial_learning_rate: 0.001
|
63 |
+
end_learning_rate: 0.00001
|
64 |
+
decay_steps: 150000 # < train_max_steps is recommend.
|
65 |
+
warmup_proportion: 0.02
|
66 |
+
weight_decay: 0.001
|
67 |
+
|
68 |
+
gradient_accumulation_steps: 1
|
69 |
+
var_train_expr: null # trainable variable expr (eg. 'embeddings|decoder_cell' )
|
70 |
+
# must separate by |. if var_train_expr is null then we
|
71 |
+
# training all variables.
|
72 |
+
###########################################################
|
73 |
+
# INTERVAL SETTING #
|
74 |
+
###########################################################
|
75 |
+
train_max_steps: 200000 # Number of training steps.
|
76 |
+
save_interval_steps: 2000 # Interval steps to save checkpoint.
|
77 |
+
eval_interval_steps: 500 # Interval steps to evaluate the network.
|
78 |
+
log_interval_steps: 200 # Interval steps to record the training log.
|
79 |
+
start_schedule_teacher_forcing: 200001 # don't need to apply schedule teacher forcing.
|
80 |
+
start_ratio_value: 0.5 # start ratio of scheduled teacher forcing.
|
81 |
+
schedule_decay_steps: 50000 # decay step scheduled teacher forcing.
|
82 |
+
end_ratio_value: 0.0 # end ratio of scheduled teacher forcing.
|
83 |
+
###########################################################
|
84 |
+
# OTHER SETTING #
|
85 |
+
###########################################################
|
86 |
+
num_save_intermediate_results: 1 # Number of results to be saved as intermediate results.
|