morriszms commited on
Commit
20d37bb
1 Parent(s): cb1c76f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -12
README.md CHANGED
@@ -30,8 +30,16 @@ This repo contains GGUF format model files for [unsloth/gemma-7b-it](https://hug
30
 
31
  The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
32
 
 
 
 
 
 
 
 
33
  ## Prompt template
34
 
 
35
  ```
36
  <bos><start_of_turn>user
37
  {prompt}<end_of_turn>
@@ -42,18 +50,18 @@ The files were quantized using machines provided by [TensorBlock](https://tensor
42
 
43
  | Filename | Quant type | File Size | Description |
44
  | -------- | ---------- | --------- | ----------- |
45
- | [gemma-7b-it-Q2_K.gguf](https://huggingface.co/tensorblock/gemma-7b-it-GGUF/tree/main/gemma-7b-it-Q2_K.gguf) | Q2_K | 3.242 GB | smallest, significant quality loss - not recommended for most purposes |
46
- | [gemma-7b-it-Q3_K_S.gguf](https://huggingface.co/tensorblock/gemma-7b-it-GGUF/tree/main/gemma-7b-it-Q3_K_S.gguf) | Q3_K_S | 3.709 GB | very small, high quality loss |
47
- | [gemma-7b-it-Q3_K_M.gguf](https://huggingface.co/tensorblock/gemma-7b-it-GGUF/tree/main/gemma-7b-it-Q3_K_M.gguf) | Q3_K_M | 4.069 GB | very small, high quality loss |
48
- | [gemma-7b-it-Q3_K_L.gguf](https://huggingface.co/tensorblock/gemma-7b-it-GGUF/tree/main/gemma-7b-it-Q3_K_L.gguf) | Q3_K_L | 4.386 GB | small, substantial quality loss |
49
- | [gemma-7b-it-Q4_0.gguf](https://huggingface.co/tensorblock/gemma-7b-it-GGUF/tree/main/gemma-7b-it-Q4_0.gguf) | Q4_0 | 4.668 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
50
- | [gemma-7b-it-Q4_K_S.gguf](https://huggingface.co/tensorblock/gemma-7b-it-GGUF/tree/main/gemma-7b-it-Q4_K_S.gguf) | Q4_K_S | 4.700 GB | small, greater quality loss |
51
- | [gemma-7b-it-Q4_K_M.gguf](https://huggingface.co/tensorblock/gemma-7b-it-GGUF/tree/main/gemma-7b-it-Q4_K_M.gguf) | Q4_K_M | 4.964 GB | medium, balanced quality - recommended |
52
- | [gemma-7b-it-Q5_0.gguf](https://huggingface.co/tensorblock/gemma-7b-it-GGUF/tree/main/gemma-7b-it-Q5_0.gguf) | Q5_0 | 5.570 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
53
- | [gemma-7b-it-Q5_K_S.gguf](https://huggingface.co/tensorblock/gemma-7b-it-GGUF/tree/main/gemma-7b-it-Q5_K_S.gguf) | Q5_K_S | 5.570 GB | large, low quality loss - recommended |
54
- | [gemma-7b-it-Q5_K_M.gguf](https://huggingface.co/tensorblock/gemma-7b-it-GGUF/tree/main/gemma-7b-it-Q5_K_M.gguf) | Q5_K_M | 5.723 GB | large, very low quality loss - recommended |
55
- | [gemma-7b-it-Q6_K.gguf](https://huggingface.co/tensorblock/gemma-7b-it-GGUF/tree/main/gemma-7b-it-Q6_K.gguf) | Q6_K | 6.529 GB | very large, extremely low quality loss |
56
- | [gemma-7b-it-Q8_0.gguf](https://huggingface.co/tensorblock/gemma-7b-it-GGUF/tree/main/gemma-7b-it-Q8_0.gguf) | Q8_0 | 8.454 GB | very large, extremely low quality loss - not recommended |
57
 
58
 
59
  ## Downloading instruction
 
30
 
31
  The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
32
 
33
+
34
+ <div style="text-align: left; margin: 20px 0;">
35
+ <a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
36
+ Run them on the TensorBlock client using your local machine ↗
37
+ </a>
38
+ </div>
39
+
40
  ## Prompt template
41
 
42
+
43
  ```
44
  <bos><start_of_turn>user
45
  {prompt}<end_of_turn>
 
50
 
51
  | Filename | Quant type | File Size | Description |
52
  | -------- | ---------- | --------- | ----------- |
53
+ | [gemma-7b-it-Q2_K.gguf](https://huggingface.co/tensorblock/gemma-7b-it-GGUF/blob/main/gemma-7b-it-Q2_K.gguf) | Q2_K | 3.242 GB | smallest, significant quality loss - not recommended for most purposes |
54
+ | [gemma-7b-it-Q3_K_S.gguf](https://huggingface.co/tensorblock/gemma-7b-it-GGUF/blob/main/gemma-7b-it-Q3_K_S.gguf) | Q3_K_S | 3.709 GB | very small, high quality loss |
55
+ | [gemma-7b-it-Q3_K_M.gguf](https://huggingface.co/tensorblock/gemma-7b-it-GGUF/blob/main/gemma-7b-it-Q3_K_M.gguf) | Q3_K_M | 4.069 GB | very small, high quality loss |
56
+ | [gemma-7b-it-Q3_K_L.gguf](https://huggingface.co/tensorblock/gemma-7b-it-GGUF/blob/main/gemma-7b-it-Q3_K_L.gguf) | Q3_K_L | 4.386 GB | small, substantial quality loss |
57
+ | [gemma-7b-it-Q4_0.gguf](https://huggingface.co/tensorblock/gemma-7b-it-GGUF/blob/main/gemma-7b-it-Q4_0.gguf) | Q4_0 | 4.668 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
58
+ | [gemma-7b-it-Q4_K_S.gguf](https://huggingface.co/tensorblock/gemma-7b-it-GGUF/blob/main/gemma-7b-it-Q4_K_S.gguf) | Q4_K_S | 4.700 GB | small, greater quality loss |
59
+ | [gemma-7b-it-Q4_K_M.gguf](https://huggingface.co/tensorblock/gemma-7b-it-GGUF/blob/main/gemma-7b-it-Q4_K_M.gguf) | Q4_K_M | 4.964 GB | medium, balanced quality - recommended |
60
+ | [gemma-7b-it-Q5_0.gguf](https://huggingface.co/tensorblock/gemma-7b-it-GGUF/blob/main/gemma-7b-it-Q5_0.gguf) | Q5_0 | 5.570 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
61
+ | [gemma-7b-it-Q5_K_S.gguf](https://huggingface.co/tensorblock/gemma-7b-it-GGUF/blob/main/gemma-7b-it-Q5_K_S.gguf) | Q5_K_S | 5.570 GB | large, low quality loss - recommended |
62
+ | [gemma-7b-it-Q5_K_M.gguf](https://huggingface.co/tensorblock/gemma-7b-it-GGUF/blob/main/gemma-7b-it-Q5_K_M.gguf) | Q5_K_M | 5.723 GB | large, very low quality loss - recommended |
63
+ | [gemma-7b-it-Q6_K.gguf](https://huggingface.co/tensorblock/gemma-7b-it-GGUF/blob/main/gemma-7b-it-Q6_K.gguf) | Q6_K | 6.529 GB | very large, extremely low quality loss |
64
+ | [gemma-7b-it-Q8_0.gguf](https://huggingface.co/tensorblock/gemma-7b-it-GGUF/blob/main/gemma-7b-it-Q8_0.gguf) | Q8_0 | 8.454 GB | very large, extremely low quality loss - not recommended |
65
 
66
 
67
  ## Downloading instruction