morriszms commited on
Commit
0abf66d
·
verified ·
1 Parent(s): c95fc0d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -12
README.md CHANGED
@@ -29,8 +29,16 @@ This repo contains GGUF format model files for [Qwen/Qwen1.5-4B](https://hugging
29
 
30
  The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
31
 
 
 
 
 
 
 
 
32
  ## Prompt template
33
 
 
34
  ```
35
  <|im_start|>system
36
  {system_prompt}<|im_end|>
@@ -43,18 +51,18 @@ The files were quantized using machines provided by [TensorBlock](https://tensor
43
 
44
  | Filename | Quant type | File Size | Description |
45
  | -------- | ---------- | --------- | ----------- |
46
- | [Qwen1.5-4B-Q2_K.gguf](https://huggingface.co/tensorblock/Qwen1.5-4B-GGUF/tree/main/Qwen1.5-4B-Q2_K.gguf) | Q2_K | 1.509 GB | smallest, significant quality loss - not recommended for most purposes |
47
- | [Qwen1.5-4B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Qwen1.5-4B-GGUF/tree/main/Qwen1.5-4B-Q3_K_S.gguf) | Q3_K_S | 1.730 GB | very small, high quality loss |
48
- | [Qwen1.5-4B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Qwen1.5-4B-GGUF/tree/main/Qwen1.5-4B-Q3_K_M.gguf) | Q3_K_M | 1.888 GB | very small, high quality loss |
49
- | [Qwen1.5-4B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Qwen1.5-4B-GGUF/tree/main/Qwen1.5-4B-Q3_K_L.gguf) | Q3_K_L | 2.025 GB | small, substantial quality loss |
50
- | [Qwen1.5-4B-Q4_0.gguf](https://huggingface.co/tensorblock/Qwen1.5-4B-GGUF/tree/main/Qwen1.5-4B-Q4_0.gguf) | Q4_0 | 2.170 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
51
- | [Qwen1.5-4B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Qwen1.5-4B-GGUF/tree/main/Qwen1.5-4B-Q4_K_S.gguf) | Q4_K_S | 2.183 GB | small, greater quality loss |
52
- | [Qwen1.5-4B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Qwen1.5-4B-GGUF/tree/main/Qwen1.5-4B-Q4_K_M.gguf) | Q4_K_M | 2.287 GB | medium, balanced quality - recommended |
53
- | [Qwen1.5-4B-Q5_0.gguf](https://huggingface.co/tensorblock/Qwen1.5-4B-GGUF/tree/main/Qwen1.5-4B-Q5_0.gguf) | Q5_0 | 2.585 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
54
- | [Qwen1.5-4B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Qwen1.5-4B-GGUF/tree/main/Qwen1.5-4B-Q5_K_S.gguf) | Q5_K_S | 2.585 GB | large, low quality loss - recommended |
55
- | [Qwen1.5-4B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Qwen1.5-4B-GGUF/tree/main/Qwen1.5-4B-Q5_K_M.gguf) | Q5_K_M | 2.645 GB | large, very low quality loss - recommended |
56
- | [Qwen1.5-4B-Q6_K.gguf](https://huggingface.co/tensorblock/Qwen1.5-4B-GGUF/tree/main/Qwen1.5-4B-Q6_K.gguf) | Q6_K | 3.025 GB | very large, extremely low quality loss |
57
- | [Qwen1.5-4B-Q8_0.gguf](https://huggingface.co/tensorblock/Qwen1.5-4B-GGUF/tree/main/Qwen1.5-4B-Q8_0.gguf) | Q8_0 | 3.916 GB | very large, extremely low quality loss - not recommended |
58
 
59
 
60
  ## Downloading instruction
 
29
 
30
  The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
31
 
32
+
33
+ <div style="text-align: left; margin: 20px 0;">
34
+ <a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
35
+ Run them on the TensorBlock client using your local machine ↗
36
+ </a>
37
+ </div>
38
+
39
  ## Prompt template
40
 
41
+
42
  ```
43
  <|im_start|>system
44
  {system_prompt}<|im_end|>
 
51
 
52
  | Filename | Quant type | File Size | Description |
53
  | -------- | ---------- | --------- | ----------- |
54
+ | [Qwen1.5-4B-Q2_K.gguf](https://huggingface.co/tensorblock/Qwen1.5-4B-GGUF/blob/main/Qwen1.5-4B-Q2_K.gguf) | Q2_K | 1.509 GB | smallest, significant quality loss - not recommended for most purposes |
55
+ | [Qwen1.5-4B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Qwen1.5-4B-GGUF/blob/main/Qwen1.5-4B-Q3_K_S.gguf) | Q3_K_S | 1.730 GB | very small, high quality loss |
56
+ | [Qwen1.5-4B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Qwen1.5-4B-GGUF/blob/main/Qwen1.5-4B-Q3_K_M.gguf) | Q3_K_M | 1.888 GB | very small, high quality loss |
57
+ | [Qwen1.5-4B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Qwen1.5-4B-GGUF/blob/main/Qwen1.5-4B-Q3_K_L.gguf) | Q3_K_L | 2.025 GB | small, substantial quality loss |
58
+ | [Qwen1.5-4B-Q4_0.gguf](https://huggingface.co/tensorblock/Qwen1.5-4B-GGUF/blob/main/Qwen1.5-4B-Q4_0.gguf) | Q4_0 | 2.170 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
59
+ | [Qwen1.5-4B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Qwen1.5-4B-GGUF/blob/main/Qwen1.5-4B-Q4_K_S.gguf) | Q4_K_S | 2.183 GB | small, greater quality loss |
60
+ | [Qwen1.5-4B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Qwen1.5-4B-GGUF/blob/main/Qwen1.5-4B-Q4_K_M.gguf) | Q4_K_M | 2.287 GB | medium, balanced quality - recommended |
61
+ | [Qwen1.5-4B-Q5_0.gguf](https://huggingface.co/tensorblock/Qwen1.5-4B-GGUF/blob/main/Qwen1.5-4B-Q5_0.gguf) | Q5_0 | 2.585 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
62
+ | [Qwen1.5-4B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Qwen1.5-4B-GGUF/blob/main/Qwen1.5-4B-Q5_K_S.gguf) | Q5_K_S | 2.585 GB | large, low quality loss - recommended |
63
+ | [Qwen1.5-4B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Qwen1.5-4B-GGUF/blob/main/Qwen1.5-4B-Q5_K_M.gguf) | Q5_K_M | 2.645 GB | large, very low quality loss - recommended |
64
+ | [Qwen1.5-4B-Q6_K.gguf](https://huggingface.co/tensorblock/Qwen1.5-4B-GGUF/blob/main/Qwen1.5-4B-Q6_K.gguf) | Q6_K | 3.025 GB | very large, extremely low quality loss |
65
+ | [Qwen1.5-4B-Q8_0.gguf](https://huggingface.co/tensorblock/Qwen1.5-4B-GGUF/blob/main/Qwen1.5-4B-Q8_0.gguf) | Q8_0 | 3.916 GB | very large, extremely low quality loss - not recommended |
66
 
67
 
68
  ## Downloading instruction