tennant commited on
Commit
98a00ef
·
verified ·
1 Parent(s): 3608622

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: liuhaotian/llava-v1.5-7b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.9.0
adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "liuhaotian/llava-v1.5-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 128,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 64,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "gate_proj",
23
+ "v_proj",
24
+ "down_proj",
25
+ "up_proj",
26
+ "k_proj",
27
+ "o_proj",
28
+ "q_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_dora": false,
32
+ "use_rslora": false
33
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0064022b0c700c323ae5c5b0867a775f4b911e8d8bbae62e926e079ad76bde6
3
+ size 319876480
config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "liuhaotian/llava-v1.5-7b",
3
+ "architectures": [
4
+ "LlavaLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "freeze_mm_vision_resampler": false,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "image_aspect_ratio": "pad",
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 11008,
17
+ "max_length": 4096,
18
+ "max_position_embeddings": 4096,
19
+ "mm_hidden_size": 1024,
20
+ "mm_patch_merge_type": "flat",
21
+ "mm_projector_lr": 2e-05,
22
+ "mm_projector_type": "mlp2x_gelu",
23
+ "mm_resampler_type": null,
24
+ "mm_use_im_patch_token": false,
25
+ "mm_use_im_start_end": false,
26
+ "mm_vision_select_feature": "patch",
27
+ "mm_vision_select_layer": -2,
28
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
29
+ "model_type": "llava_llama",
30
+ "num_attention_heads": 32,
31
+ "num_hidden_layers": 32,
32
+ "num_key_value_heads": 32,
33
+ "pad_token_id": 0,
34
+ "pretraining_tp": 1,
35
+ "rms_norm_eps": 1e-05,
36
+ "rope_scaling": null,
37
+ "rope_theta": 10000.0,
38
+ "tie_word_embeddings": false,
39
+ "tokenizer_model_max_length": 4096,
40
+ "tokenizer_padding_side": "right",
41
+ "torch_dtype": "float16",
42
+ "transformers_version": "4.37.2",
43
+ "tune_mm_mlp_adapter": false,
44
+ "tune_mm_vision_resampler": false,
45
+ "unfreeze_mm_vision_tower": false,
46
+ "use_cache": true,
47
+ "use_mm_proj": true,
48
+ "vocab_size": 32000
49
+ }
non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c9cbb9f2b4d0dbbe562483f4a84e1584e040503e917e634fbf65d5c1435af2e
3
+ size 41961648
trainer_state.json ADDED
@@ -0,0 +1,3642 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 602,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 1.0526315789473685e-06,
14
+ "loss": 1.307,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 2.105263157894737e-06,
20
+ "loss": 1.2963,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.0,
25
+ "learning_rate": 3.157894736842105e-06,
26
+ "loss": 1.3495,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 4.210526315789474e-06,
32
+ "loss": 1.2897,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 5.263157894736842e-06,
38
+ "loss": 1.2698,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 6.31578947368421e-06,
44
+ "loss": 1.3108,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 7.368421052631579e-06,
50
+ "loss": 1.2761,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.01,
55
+ "learning_rate": 8.421052631578948e-06,
56
+ "loss": 1.2979,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.01,
61
+ "learning_rate": 9.473684210526315e-06,
62
+ "loss": 1.2876,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 1.0526315789473684e-05,
68
+ "loss": 1.2871,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 1.1578947368421053e-05,
74
+ "loss": 1.2509,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.02,
79
+ "learning_rate": 1.263157894736842e-05,
80
+ "loss": 1.2231,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.02,
85
+ "learning_rate": 1.3684210526315791e-05,
86
+ "loss": 1.207,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.02,
91
+ "learning_rate": 1.4736842105263159e-05,
92
+ "loss": 1.2046,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.02,
97
+ "learning_rate": 1.578947368421053e-05,
98
+ "loss": 1.2459,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.03,
103
+ "learning_rate": 1.6842105263157896e-05,
104
+ "loss": 1.1277,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.03,
109
+ "learning_rate": 1.7894736842105264e-05,
110
+ "loss": 1.1285,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.03,
115
+ "learning_rate": 1.894736842105263e-05,
116
+ "loss": 1.1319,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.03,
121
+ "learning_rate": 2e-05,
122
+ "loss": 1.2113,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.03,
127
+ "learning_rate": 1.9999854811710317e-05,
128
+ "loss": 1.0988,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.03,
133
+ "learning_rate": 1.999941925105719e-05,
134
+ "loss": 1.0399,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.04,
139
+ "learning_rate": 1.9998693330688283e-05,
140
+ "loss": 1.0854,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.04,
145
+ "learning_rate": 1.9997677071682623e-05,
146
+ "loss": 1.1107,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.04,
151
+ "learning_rate": 1.999637050354999e-05,
152
+ "loss": 1.0481,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.04,
157
+ "learning_rate": 1.9994773664230064e-05,
158
+ "loss": 1.1414,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.04,
163
+ "learning_rate": 1.9992886600091318e-05,
164
+ "loss": 1.0073,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.04,
169
+ "learning_rate": 1.9990709365929678e-05,
170
+ "loss": 1.0046,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.05,
175
+ "learning_rate": 1.9988242024966924e-05,
176
+ "loss": 0.998,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.05,
181
+ "learning_rate": 1.9985484648848854e-05,
182
+ "loss": 0.982,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.05,
187
+ "learning_rate": 1.9982437317643218e-05,
188
+ "loss": 1.0077,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.05,
193
+ "learning_rate": 1.997910011983737e-05,
194
+ "loss": 0.987,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.05,
199
+ "learning_rate": 1.9975473152335726e-05,
200
+ "loss": 0.9571,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.05,
205
+ "learning_rate": 1.9971556520456928e-05,
206
+ "loss": 0.9772,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.06,
211
+ "learning_rate": 1.996735033793079e-05,
212
+ "loss": 1.0445,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.06,
217
+ "learning_rate": 1.9962854726894997e-05,
218
+ "loss": 0.9987,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.06,
223
+ "learning_rate": 1.995806981789157e-05,
224
+ "loss": 0.9634,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.06,
229
+ "learning_rate": 1.995299574986306e-05,
230
+ "loss": 1.0259,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.06,
235
+ "learning_rate": 1.9947632670148517e-05,
236
+ "loss": 0.9271,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.06,
241
+ "learning_rate": 1.9941980734479214e-05,
242
+ "loss": 0.9988,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.07,
247
+ "learning_rate": 1.9936040106974132e-05,
248
+ "loss": 0.9891,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.07,
253
+ "learning_rate": 1.992981096013517e-05,
254
+ "loss": 0.9391,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.07,
259
+ "learning_rate": 1.9923293474842175e-05,
260
+ "loss": 0.9417,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.07,
265
+ "learning_rate": 1.9916487840347644e-05,
266
+ "loss": 0.904,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.07,
271
+ "learning_rate": 1.990939425427127e-05,
272
+ "loss": 0.9252,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.07,
277
+ "learning_rate": 1.9902012922594178e-05,
278
+ "loss": 0.9581,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.08,
283
+ "learning_rate": 1.9894344059652953e-05,
284
+ "loss": 0.8464,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.08,
289
+ "learning_rate": 1.9886387888133413e-05,
290
+ "loss": 0.9173,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.08,
295
+ "learning_rate": 1.9878144639064145e-05,
296
+ "loss": 0.915,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.08,
301
+ "learning_rate": 1.9869614551809793e-05,
302
+ "loss": 0.9444,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.08,
307
+ "learning_rate": 1.9860797874064123e-05,
308
+ "loss": 0.9006,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.08,
313
+ "learning_rate": 1.9851694861842795e-05,
314
+ "loss": 0.895,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.09,
319
+ "learning_rate": 1.984230577947597e-05,
320
+ "loss": 0.8678,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.09,
325
+ "learning_rate": 1.9832630899600607e-05,
326
+ "loss": 0.9083,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.09,
331
+ "learning_rate": 1.9822670503152567e-05,
332
+ "loss": 0.9079,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.09,
337
+ "learning_rate": 1.9812424879358424e-05,
338
+ "loss": 0.85,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.09,
343
+ "learning_rate": 1.9801894325727104e-05,
344
+ "loss": 0.8878,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.09,
349
+ "learning_rate": 1.979107914804122e-05,
350
+ "loss": 0.8536,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.1,
355
+ "learning_rate": 1.97799796603482e-05,
356
+ "loss": 0.8637,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.1,
361
+ "learning_rate": 1.9768596184951174e-05,
362
+ "loss": 0.8916,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.1,
367
+ "learning_rate": 1.9756929052399606e-05,
368
+ "loss": 0.8217,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.1,
373
+ "learning_rate": 1.9744978601479693e-05,
374
+ "loss": 0.8361,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.1,
379
+ "learning_rate": 1.9732745179204553e-05,
380
+ "loss": 0.8724,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.1,
385
+ "learning_rate": 1.972022914080411e-05,
386
+ "loss": 0.8808,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.11,
391
+ "learning_rate": 1.970743084971481e-05,
392
+ "loss": 0.8577,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.11,
397
+ "learning_rate": 1.9694350677569043e-05,
398
+ "loss": 0.8291,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.11,
403
+ "learning_rate": 1.9680989004184383e-05,
404
+ "loss": 0.8321,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.11,
409
+ "learning_rate": 1.9667346217552528e-05,
410
+ "loss": 0.8632,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.11,
415
+ "learning_rate": 1.965342271382805e-05,
416
+ "loss": 0.857,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.11,
421
+ "learning_rate": 1.9639218897316885e-05,
422
+ "loss": 0.8949,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.12,
427
+ "learning_rate": 1.9624735180464602e-05,
428
+ "loss": 0.8642,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.12,
433
+ "learning_rate": 1.9609971983844412e-05,
434
+ "loss": 0.7951,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.12,
439
+ "learning_rate": 1.9594929736144978e-05,
440
+ "loss": 0.8023,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.12,
445
+ "learning_rate": 1.957960887415793e-05,
446
+ "loss": 0.8151,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.12,
451
+ "learning_rate": 1.9564009842765225e-05,
452
+ "loss": 0.7973,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.12,
457
+ "learning_rate": 1.9548133094926203e-05,
458
+ "loss": 0.8013,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.13,
463
+ "learning_rate": 1.953197909166443e-05,
464
+ "loss": 0.8468,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.13,
469
+ "learning_rate": 1.9515548302054335e-05,
470
+ "loss": 0.7396,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.13,
475
+ "learning_rate": 1.949884120320756e-05,
476
+ "loss": 0.7952,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.13,
481
+ "learning_rate": 1.948185828025913e-05,
482
+ "loss": 0.7813,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.13,
487
+ "learning_rate": 1.946460002635335e-05,
488
+ "loss": 0.8011,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.13,
493
+ "learning_rate": 1.9447066942629495e-05,
494
+ "loss": 0.7541,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.14,
499
+ "learning_rate": 1.942925953820725e-05,
500
+ "loss": 0.8306,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.14,
505
+ "learning_rate": 1.941117833017194e-05,
506
+ "loss": 0.7468,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.14,
511
+ "learning_rate": 1.939282384355949e-05,
512
+ "loss": 0.7923,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.14,
517
+ "learning_rate": 1.9374196611341212e-05,
518
+ "loss": 0.7392,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.14,
523
+ "learning_rate": 1.9355297174408298e-05,
524
+ "loss": 0.7098,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.14,
529
+ "learning_rate": 1.9336126081556134e-05,
530
+ "loss": 0.8436,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.15,
535
+ "learning_rate": 1.931668388946836e-05,
536
+ "loss": 0.7865,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.15,
541
+ "learning_rate": 1.9296971162700696e-05,
542
+ "loss": 0.7492,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.15,
547
+ "learning_rate": 1.9276988473664557e-05,
548
+ "loss": 0.8131,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.15,
553
+ "learning_rate": 1.9256736402610437e-05,
554
+ "loss": 0.8514,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.15,
559
+ "learning_rate": 1.9236215537611044e-05,
560
+ "loss": 0.7131,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.15,
565
+ "learning_rate": 1.9215426474544242e-05,
566
+ "loss": 0.7999,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.16,
571
+ "learning_rate": 1.9194369817075725e-05,
572
+ "loss": 0.807,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.16,
577
+ "learning_rate": 1.9173046176641515e-05,
578
+ "loss": 0.7894,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.16,
583
+ "learning_rate": 1.9151456172430186e-05,
584
+ "loss": 0.7604,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.16,
589
+ "learning_rate": 1.91296004313649e-05,
590
+ "loss": 0.711,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.16,
595
+ "learning_rate": 1.9107479588085182e-05,
596
+ "loss": 0.7407,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.16,
601
+ "learning_rate": 1.908509428492852e-05,
602
+ "loss": 0.7198,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.17,
607
+ "learning_rate": 1.9062445171911688e-05,
608
+ "loss": 0.7989,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.17,
613
+ "learning_rate": 1.903953290671188e-05,
614
+ "loss": 0.6815,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.17,
619
+ "learning_rate": 1.9016358154647618e-05,
620
+ "loss": 0.8462,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.17,
625
+ "learning_rate": 1.8992921588659424e-05,
626
+ "loss": 0.7353,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.17,
631
+ "learning_rate": 1.8969223889290283e-05,
632
+ "loss": 0.741,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.17,
637
+ "learning_rate": 1.8945265744665886e-05,
638
+ "loss": 0.6829,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.18,
643
+ "learning_rate": 1.8921047850474645e-05,
644
+ "loss": 0.6901,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.18,
649
+ "learning_rate": 1.8896570909947477e-05,
650
+ "loss": 0.7278,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.18,
655
+ "learning_rate": 1.887183563383741e-05,
656
+ "loss": 0.7912,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.18,
661
+ "learning_rate": 1.884684274039894e-05,
662
+ "loss": 0.778,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.18,
667
+ "learning_rate": 1.8821592955367154e-05,
668
+ "loss": 0.7267,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.18,
673
+ "learning_rate": 1.8796087011936665e-05,
674
+ "loss": 0.7756,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.19,
679
+ "learning_rate": 1.8770325650740347e-05,
680
+ "loss": 0.6625,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.19,
685
+ "learning_rate": 1.874430961982778e-05,
686
+ "loss": 0.7652,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.19,
691
+ "learning_rate": 1.871803967464358e-05,
692
+ "loss": 0.6545,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.19,
697
+ "learning_rate": 1.8691516578005426e-05,
698
+ "loss": 0.7228,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.19,
703
+ "learning_rate": 1.866474110008193e-05,
704
+ "loss": 0.7667,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.19,
709
+ "learning_rate": 1.8637714018370255e-05,
710
+ "loss": 0.7087,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.2,
715
+ "learning_rate": 1.8610436117673557e-05,
716
+ "loss": 0.7187,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.2,
721
+ "learning_rate": 1.8582908190078184e-05,
722
+ "loss": 0.6764,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.2,
727
+ "learning_rate": 1.8555131034930686e-05,
728
+ "loss": 0.736,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.2,
733
+ "learning_rate": 1.852710545881459e-05,
734
+ "loss": 0.6797,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.2,
739
+ "learning_rate": 1.8498832275526988e-05,
740
+ "loss": 0.7409,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.2,
745
+ "learning_rate": 1.8470312306054903e-05,
746
+ "loss": 0.7194,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.21,
751
+ "learning_rate": 1.8441546378551457e-05,
752
+ "loss": 0.7724,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.21,
757
+ "learning_rate": 1.8412535328311813e-05,
758
+ "loss": 0.7001,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.21,
763
+ "learning_rate": 1.838327999774892e-05,
764
+ "loss": 0.702,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.21,
769
+ "learning_rate": 1.8353781236369065e-05,
770
+ "loss": 0.7145,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.21,
775
+ "learning_rate": 1.832403990074719e-05,
776
+ "loss": 0.7009,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.21,
781
+ "learning_rate": 1.829405685450202e-05,
782
+ "loss": 0.6825,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.22,
787
+ "learning_rate": 1.8263832968271e-05,
788
+ "loss": 0.6862,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.22,
793
+ "learning_rate": 1.8233369119685e-05,
794
+ "loss": 0.714,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.22,
799
+ "learning_rate": 1.8202666193342834e-05,
800
+ "loss": 0.7047,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.22,
805
+ "learning_rate": 1.817172508078557e-05,
806
+ "loss": 0.689,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.22,
811
+ "learning_rate": 1.814054668047066e-05,
812
+ "loss": 0.6849,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.22,
817
+ "learning_rate": 1.8109131897745823e-05,
818
+ "loss": 0.6572,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.23,
823
+ "learning_rate": 1.807748164482277e-05,
824
+ "loss": 0.6737,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.23,
829
+ "learning_rate": 1.8045596840750722e-05,
830
+ "loss": 0.6582,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.23,
835
+ "learning_rate": 1.801347841138972e-05,
836
+ "loss": 0.6704,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.23,
841
+ "learning_rate": 1.7981127289383718e-05,
842
+ "loss": 0.6941,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.23,
847
+ "learning_rate": 1.7948544414133534e-05,
848
+ "loss": 0.6395,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.23,
853
+ "learning_rate": 1.7915730731769558e-05,
854
+ "loss": 0.693,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.24,
859
+ "learning_rate": 1.788268719512427e-05,
860
+ "loss": 0.6509,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.24,
865
+ "learning_rate": 1.7849414763704587e-05,
866
+ "loss": 0.6709,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.24,
871
+ "learning_rate": 1.781591440366399e-05,
872
+ "loss": 0.5932,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.24,
877
+ "learning_rate": 1.778218708777448e-05,
878
+ "loss": 0.6661,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.24,
883
+ "learning_rate": 1.7748233795398308e-05,
884
+ "loss": 0.68,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.24,
889
+ "learning_rate": 1.771405551245957e-05,
890
+ "loss": 0.6303,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.25,
895
+ "learning_rate": 1.767965323141555e-05,
896
+ "loss": 0.6538,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.25,
901
+ "learning_rate": 1.764502795122793e-05,
902
+ "loss": 0.6347,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.25,
907
+ "learning_rate": 1.761018067733374e-05,
908
+ "loss": 0.6402,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.25,
913
+ "learning_rate": 1.7575112421616203e-05,
914
+ "loss": 0.671,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.25,
919
+ "learning_rate": 1.753982420237533e-05,
920
+ "loss": 0.6941,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.25,
925
+ "learning_rate": 1.750431704429837e-05,
926
+ "loss": 0.6461,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.26,
931
+ "learning_rate": 1.7468591978430024e-05,
932
+ "loss": 0.5665,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.26,
937
+ "learning_rate": 1.7432650042142535e-05,
938
+ "loss": 0.6381,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.26,
943
+ "learning_rate": 1.7396492279105562e-05,
944
+ "loss": 0.5423,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.26,
949
+ "learning_rate": 1.736011973925585e-05,
950
+ "loss": 0.6849,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.26,
955
+ "learning_rate": 1.7323533478766777e-05,
956
+ "loss": 0.6038,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.26,
961
+ "learning_rate": 1.728673456001766e-05,
962
+ "loss": 0.6124,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.27,
967
+ "learning_rate": 1.7249724051562905e-05,
968
+ "loss": 0.6959,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.27,
973
+ "learning_rate": 1.7212503028101012e-05,
974
+ "loss": 0.5771,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.27,
979
+ "learning_rate": 1.717507257044331e-05,
980
+ "loss": 0.6593,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.27,
985
+ "learning_rate": 1.7137433765482644e-05,
986
+ "loss": 0.6619,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.27,
991
+ "learning_rate": 1.709958770616174e-05,
992
+ "loss": 0.5744,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.27,
997
+ "learning_rate": 1.7061535491441538e-05,
998
+ "loss": 0.6,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.28,
1003
+ "learning_rate": 1.7023278226269222e-05,
1004
+ "loss": 0.6637,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.28,
1009
+ "learning_rate": 1.6984817021546177e-05,
1010
+ "loss": 0.6429,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.28,
1015
+ "learning_rate": 1.6946152994095705e-05,
1016
+ "loss": 0.5642,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.28,
1021
+ "learning_rate": 1.6907287266630614e-05,
1022
+ "loss": 0.5787,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.28,
1027
+ "learning_rate": 1.6868220967720604e-05,
1028
+ "loss": 0.6205,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.28,
1033
+ "learning_rate": 1.6828955231759495e-05,
1034
+ "loss": 0.6477,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.29,
1039
+ "learning_rate": 1.6789491198932302e-05,
1040
+ "loss": 0.6445,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.29,
1045
+ "learning_rate": 1.6749830015182106e-05,
1046
+ "loss": 0.6598,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.29,
1051
+ "learning_rate": 1.6709972832176797e-05,
1052
+ "loss": 0.6433,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.29,
1057
+ "learning_rate": 1.6669920807275622e-05,
1058
+ "loss": 0.5778,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.29,
1063
+ "learning_rate": 1.662967510349558e-05,
1064
+ "loss": 0.5938,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.29,
1069
+ "learning_rate": 1.658923688947765e-05,
1070
+ "loss": 0.5571,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.3,
1075
+ "learning_rate": 1.6548607339452853e-05,
1076
+ "loss": 0.6399,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.3,
1081
+ "learning_rate": 1.6507787633208173e-05,
1082
+ "loss": 0.5792,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.3,
1087
+ "learning_rate": 1.646677895605227e-05,
1088
+ "loss": 0.6683,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.3,
1093
+ "learning_rate": 1.642558249878109e-05,
1094
+ "loss": 0.6226,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.3,
1099
+ "learning_rate": 1.6384199457643264e-05,
1100
+ "loss": 0.5441,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.3,
1105
+ "learning_rate": 1.6342631034305386e-05,
1106
+ "loss": 0.5371,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.31,
1111
+ "learning_rate": 1.6300878435817115e-05,
1112
+ "loss": 0.6009,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.31,
1117
+ "learning_rate": 1.6258942874576117e-05,
1118
+ "loss": 0.5632,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.31,
1123
+ "learning_rate": 1.6216825568292885e-05,
1124
+ "loss": 0.4853,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.31,
1129
+ "learning_rate": 1.6174527739955345e-05,
1130
+ "loss": 0.5988,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.31,
1135
+ "learning_rate": 1.613205061779337e-05,
1136
+ "loss": 0.5738,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.31,
1141
+ "learning_rate": 1.6089395435243105e-05,
1142
+ "loss": 0.5961,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.32,
1147
+ "learning_rate": 1.6046563430911148e-05,
1148
+ "loss": 0.559,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.32,
1153
+ "learning_rate": 1.6003555848538586e-05,
1154
+ "loss": 0.616,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.32,
1159
+ "learning_rate": 1.596037393696489e-05,
1160
+ "loss": 0.5079,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.32,
1165
+ "learning_rate": 1.5917018950091642e-05,
1166
+ "loss": 0.6197,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.32,
1171
+ "learning_rate": 1.587349214684611e-05,
1172
+ "loss": 0.5498,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.32,
1177
+ "learning_rate": 1.5829794791144723e-05,
1178
+ "loss": 0.5775,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.33,
1183
+ "learning_rate": 1.5785928151856345e-05,
1184
+ "loss": 0.5465,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.33,
1189
+ "learning_rate": 1.5741893502765452e-05,
1190
+ "loss": 0.6061,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.33,
1195
+ "learning_rate": 1.569769212253511e-05,
1196
+ "loss": 0.6082,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.33,
1201
+ "learning_rate": 1.5653325294669884e-05,
1202
+ "loss": 0.5346,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.33,
1207
+ "learning_rate": 1.5608794307478546e-05,
1208
+ "loss": 0.5796,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 0.33,
1213
+ "learning_rate": 1.556410045403667e-05,
1214
+ "loss": 0.576,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 0.34,
1219
+ "learning_rate": 1.5519245032149083e-05,
1220
+ "loss": 0.5138,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 0.34,
1225
+ "learning_rate": 1.547422934431218e-05,
1226
+ "loss": 0.569,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 0.34,
1231
+ "learning_rate": 1.542905469767611e-05,
1232
+ "loss": 0.5156,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 0.34,
1237
+ "learning_rate": 1.5383722404006808e-05,
1238
+ "loss": 0.5306,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 0.34,
1243
+ "learning_rate": 1.533823377964791e-05,
1244
+ "loss": 0.5287,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 0.34,
1249
+ "learning_rate": 1.529259014548253e-05,
1250
+ "loss": 0.6334,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 0.35,
1255
+ "learning_rate": 1.5246792826894906e-05,
1256
+ "loss": 0.5342,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 0.35,
1261
+ "learning_rate": 1.5200843153731905e-05,
1262
+ "loss": 0.4981,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 0.35,
1267
+ "learning_rate": 1.5154742460264426e-05,
1268
+ "loss": 0.5076,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 0.35,
1273
+ "learning_rate": 1.5108492085148632e-05,
1274
+ "loss": 0.504,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 0.35,
1279
+ "learning_rate": 1.5062093371387097e-05,
1280
+ "loss": 0.5895,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 0.35,
1285
+ "learning_rate": 1.5015547666289798e-05,
1286
+ "loss": 0.585,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 0.36,
1291
+ "learning_rate": 1.4968856321434997e-05,
1292
+ "loss": 0.4688,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 0.36,
1297
+ "learning_rate": 1.492202069263e-05,
1298
+ "loss": 0.4596,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 0.36,
1303
+ "learning_rate": 1.4875042139871768e-05,
1304
+ "loss": 0.5631,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 0.36,
1309
+ "learning_rate": 1.482792202730745e-05,
1310
+ "loss": 0.5341,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 0.36,
1315
+ "learning_rate": 1.4780661723194757e-05,
1316
+ "loss": 0.5539,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 0.36,
1321
+ "learning_rate": 1.4733262599862234e-05,
1322
+ "loss": 0.4678,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 0.37,
1327
+ "learning_rate": 1.4685726033669412e-05,
1328
+ "loss": 0.5109,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 0.37,
1333
+ "learning_rate": 1.4638053404966836e-05,
1334
+ "loss": 0.4716,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 0.37,
1339
+ "learning_rate": 1.4590246098055995e-05,
1340
+ "loss": 0.6074,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 0.37,
1345
+ "learning_rate": 1.454230550114911e-05,
1346
+ "loss": 0.5218,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 0.37,
1351
+ "learning_rate": 1.4494233006328837e-05,
1352
+ "loss": 0.4455,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 0.37,
1357
+ "learning_rate": 1.444603000950784e-05,
1358
+ "loss": 0.5235,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 0.38,
1363
+ "learning_rate": 1.4397697910388248e-05,
1364
+ "loss": 0.5394,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 0.38,
1369
+ "learning_rate": 1.4349238112421025e-05,
1370
+ "loss": 0.4862,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 0.38,
1375
+ "learning_rate": 1.4300652022765207e-05,
1376
+ "loss": 0.5915,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 0.38,
1381
+ "learning_rate": 1.4251941052247044e-05,
1382
+ "loss": 0.5277,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 0.38,
1387
+ "learning_rate": 1.420310661531904e-05,
1388
+ "loss": 0.5018,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 0.38,
1393
+ "learning_rate": 1.4154150130018867e-05,
1394
+ "loss": 0.5244,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 0.39,
1399
+ "learning_rate": 1.4105073017928199e-05,
1400
+ "loss": 0.5861,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 0.39,
1405
+ "learning_rate": 1.405587670413143e-05,
1406
+ "loss": 0.4707,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 0.39,
1411
+ "learning_rate": 1.4006562617174292e-05,
1412
+ "loss": 0.5542,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 0.39,
1417
+ "learning_rate": 1.3957132189022373e-05,
1418
+ "loss": 0.5076,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 0.39,
1423
+ "learning_rate": 1.3907586855019538e-05,
1424
+ "loss": 0.4285,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 0.39,
1429
+ "learning_rate": 1.385792805384625e-05,
1430
+ "loss": 0.5224,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 0.4,
1435
+ "learning_rate": 1.3808157227477788e-05,
1436
+ "loss": 0.4926,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 0.4,
1441
+ "learning_rate": 1.3758275821142382e-05,
1442
+ "loss": 0.4525,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 0.4,
1447
+ "learning_rate": 1.3708285283279252e-05,
1448
+ "loss": 0.5444,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 0.4,
1453
+ "learning_rate": 1.3658187065496533e-05,
1454
+ "loss": 0.466,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 0.4,
1459
+ "learning_rate": 1.3607982622529135e-05,
1460
+ "loss": 0.4632,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 0.4,
1465
+ "learning_rate": 1.3557673412196504e-05,
1466
+ "loss": 0.4275,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 0.41,
1471
+ "learning_rate": 1.3507260895360274e-05,
1472
+ "loss": 0.446,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 0.41,
1477
+ "learning_rate": 1.3456746535881872e-05,
1478
+ "loss": 0.3904,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 0.41,
1483
+ "learning_rate": 1.3406131800579985e-05,
1484
+ "loss": 0.4532,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 0.41,
1489
+ "learning_rate": 1.3355418159187988e-05,
1490
+ "loss": 0.4585,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 0.41,
1495
+ "learning_rate": 1.3304607084311246e-05,
1496
+ "loss": 0.4695,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 0.41,
1501
+ "learning_rate": 1.3253700051384371e-05,
1502
+ "loss": 0.5278,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 0.42,
1507
+ "learning_rate": 1.3202698538628376e-05,
1508
+ "loss": 0.5221,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 0.42,
1513
+ "learning_rate": 1.3151604027007744e-05,
1514
+ "loss": 0.4634,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 0.42,
1519
+ "learning_rate": 1.310041800018742e-05,
1520
+ "loss": 0.5301,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 0.42,
1525
+ "learning_rate": 1.304914194448975e-05,
1526
+ "loss": 0.426,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 0.42,
1531
+ "learning_rate": 1.2997777348851288e-05,
1532
+ "loss": 0.4774,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 0.42,
1537
+ "learning_rate": 1.2946325704779602e-05,
1538
+ "loss": 0.4463,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 0.43,
1543
+ "learning_rate": 1.289478850630993e-05,
1544
+ "loss": 0.4482,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 0.43,
1549
+ "learning_rate": 1.284316724996181e-05,
1550
+ "loss": 0.4746,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 0.43,
1555
+ "learning_rate": 1.279146343469563e-05,
1556
+ "loss": 0.485,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 0.43,
1561
+ "learning_rate": 1.273967856186909e-05,
1562
+ "loss": 0.4232,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 0.43,
1567
+ "learning_rate": 1.2687814135193613e-05,
1568
+ "loss": 0.4519,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 0.43,
1573
+ "learning_rate": 1.2635871660690677e-05,
1574
+ "loss": 0.4322,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 0.44,
1579
+ "learning_rate": 1.2583852646648097e-05,
1580
+ "loss": 0.5083,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 0.44,
1585
+ "learning_rate": 1.25317586035762e-05,
1586
+ "loss": 0.5181,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 0.44,
1591
+ "learning_rate": 1.2479591044163997e-05,
1592
+ "loss": 0.4014,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 0.44,
1597
+ "learning_rate": 1.2427351483235224e-05,
1598
+ "loss": 0.4485,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 0.44,
1603
+ "learning_rate": 1.2375041437704394e-05,
1604
+ "loss": 0.458,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 0.44,
1609
+ "learning_rate": 1.232266242653271e-05,
1610
+ "loss": 0.4355,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 0.45,
1615
+ "learning_rate": 1.2270215970683977e-05,
1616
+ "loss": 0.3918,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 0.45,
1621
+ "learning_rate": 1.2217703593080445e-05,
1622
+ "loss": 0.4261,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 0.45,
1627
+ "learning_rate": 1.2165126818558572e-05,
1628
+ "loss": 0.3832,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 0.45,
1633
+ "learning_rate": 1.2112487173824755e-05,
1634
+ "loss": 0.4464,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 0.45,
1639
+ "learning_rate": 1.2059786187410984e-05,
1640
+ "loss": 0.4783,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 0.45,
1645
+ "learning_rate": 1.2007025389630484e-05,
1646
+ "loss": 0.4119,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 0.46,
1651
+ "learning_rate": 1.1954206312533246e-05,
1652
+ "loss": 0.4009,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 0.46,
1657
+ "learning_rate": 1.1901330489861564e-05,
1658
+ "loss": 0.4197,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 0.46,
1663
+ "learning_rate": 1.1848399457005496e-05,
1664
+ "loss": 0.4936,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 0.46,
1669
+ "learning_rate": 1.1795414750958265e-05,
1670
+ "loss": 0.4746,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 0.46,
1675
+ "learning_rate": 1.1742377910271638e-05,
1676
+ "loss": 0.4559,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 0.46,
1681
+ "learning_rate": 1.1689290475011258e-05,
1682
+ "loss": 0.4041,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 0.47,
1687
+ "learning_rate": 1.1636153986711906e-05,
1688
+ "loss": 0.4285,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 0.47,
1693
+ "learning_rate": 1.1582969988332757e-05,
1694
+ "loss": 0.4191,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 0.47,
1699
+ "learning_rate": 1.1529740024212566e-05,
1700
+ "loss": 0.3849,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 0.47,
1705
+ "learning_rate": 1.1476465640024814e-05,
1706
+ "loss": 0.4019,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 0.47,
1711
+ "learning_rate": 1.1423148382732854e-05,
1712
+ "loss": 0.4183,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 0.47,
1717
+ "learning_rate": 1.136978980054496e-05,
1718
+ "loss": 0.4263,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 0.48,
1723
+ "learning_rate": 1.1316391442869394e-05,
1724
+ "loss": 0.3615,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 0.48,
1729
+ "learning_rate": 1.12629548602694e-05,
1730
+ "loss": 0.3791,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 0.48,
1735
+ "learning_rate": 1.1209481604418182e-05,
1736
+ "loss": 0.4104,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 0.48,
1741
+ "learning_rate": 1.1155973228053854e-05,
1742
+ "loss": 0.4351,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 0.48,
1747
+ "learning_rate": 1.1102431284934345e-05,
1748
+ "loss": 0.4507,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 0.48,
1753
+ "learning_rate": 1.1048857329792284e-05,
1754
+ "loss": 0.4237,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 0.49,
1759
+ "learning_rate": 1.099525291828986e-05,
1760
+ "loss": 0.3851,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 0.49,
1765
+ "learning_rate": 1.0941619606973633e-05,
1766
+ "loss": 0.4125,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 0.49,
1771
+ "learning_rate": 1.0887958953229349e-05,
1772
+ "loss": 0.4317,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 0.49,
1777
+ "learning_rate": 1.083427251523672e-05,
1778
+ "loss": 0.3784,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 0.49,
1783
+ "learning_rate": 1.0780561851924168e-05,
1784
+ "loss": 0.4291,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 0.49,
1789
+ "learning_rate": 1.0726828522923563e-05,
1790
+ "loss": 0.3963,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 0.5,
1795
+ "learning_rate": 1.0673074088524926e-05,
1796
+ "loss": 0.4186,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 0.5,
1801
+ "learning_rate": 1.0619300109631146e-05,
1802
+ "loss": 0.4471,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 0.5,
1807
+ "learning_rate": 1.0565508147712618e-05,
1808
+ "loss": 0.3552,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 0.5,
1813
+ "learning_rate": 1.0511699764761935e-05,
1814
+ "loss": 0.3688,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 0.5,
1819
+ "learning_rate": 1.0457876523248518e-05,
1820
+ "loss": 0.3857,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 0.5,
1825
+ "learning_rate": 1.0404039986073244e-05,
1826
+ "loss": 0.3482,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 0.5,
1831
+ "learning_rate": 1.035019171652306e-05,
1832
+ "loss": 0.3513,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 0.51,
1837
+ "learning_rate": 1.0296333278225599e-05,
1838
+ "loss": 0.3954,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 0.51,
1843
+ "learning_rate": 1.024246623510377e-05,
1844
+ "loss": 0.3342,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 0.51,
1849
+ "learning_rate": 1.0188592151330343e-05,
1850
+ "loss": 0.3874,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 0.51,
1855
+ "learning_rate": 1.0134712591282539e-05,
1856
+ "loss": 0.3634,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 0.51,
1861
+ "learning_rate": 1.0080829119496587e-05,
1862
+ "loss": 0.2762,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 0.51,
1867
+ "learning_rate": 1.0026943300622313e-05,
1868
+ "loss": 0.3945,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 0.52,
1873
+ "learning_rate": 9.973056699377692e-06,
1874
+ "loss": 0.329,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 0.52,
1879
+ "learning_rate": 9.919170880503416e-06,
1880
+ "loss": 0.388,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 0.52,
1885
+ "learning_rate": 9.865287408717464e-06,
1886
+ "loss": 0.3875,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 0.52,
1891
+ "learning_rate": 9.811407848669657e-06,
1892
+ "loss": 0.3916,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 0.52,
1897
+ "learning_rate": 9.757533764896235e-06,
1898
+ "loss": 0.3841,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 0.52,
1903
+ "learning_rate": 9.703666721774403e-06,
1904
+ "loss": 0.3509,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 0.53,
1909
+ "learning_rate": 9.64980828347694e-06,
1910
+ "loss": 0.3714,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 0.53,
1915
+ "learning_rate": 9.595960013926761e-06,
1916
+ "loss": 0.3686,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 0.53,
1921
+ "learning_rate": 9.542123476751484e-06,
1922
+ "loss": 0.3704,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 0.53,
1927
+ "learning_rate": 9.488300235238067e-06,
1928
+ "loss": 0.325,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 0.53,
1933
+ "learning_rate": 9.434491852287385e-06,
1934
+ "loss": 0.3366,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 0.53,
1939
+ "learning_rate": 9.38069989036886e-06,
1940
+ "loss": 0.3826,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 0.54,
1945
+ "learning_rate": 9.326925911475075e-06,
1946
+ "loss": 0.466,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 0.54,
1951
+ "learning_rate": 9.27317147707644e-06,
1952
+ "loss": 0.3556,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 0.54,
1957
+ "learning_rate": 9.219438148075834e-06,
1958
+ "loss": 0.3765,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 0.54,
1963
+ "learning_rate": 9.165727484763283e-06,
1964
+ "loss": 0.3389,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 0.54,
1969
+ "learning_rate": 9.112041046770653e-06,
1970
+ "loss": 0.297,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 0.54,
1975
+ "learning_rate": 9.058380393026369e-06,
1976
+ "loss": 0.3571,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 0.55,
1981
+ "learning_rate": 9.00474708171014e-06,
1982
+ "loss": 0.3293,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 0.55,
1987
+ "learning_rate": 8.951142670207718e-06,
1988
+ "loss": 0.3474,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 0.55,
1993
+ "learning_rate": 8.897568715065658e-06,
1994
+ "loss": 0.3039,
1995
+ "step": 331
1996
+ },
1997
+ {
1998
+ "epoch": 0.55,
1999
+ "learning_rate": 8.844026771946148e-06,
2000
+ "loss": 0.2916,
2001
+ "step": 332
2002
+ },
2003
+ {
2004
+ "epoch": 0.55,
2005
+ "learning_rate": 8.790518395581823e-06,
2006
+ "loss": 0.3709,
2007
+ "step": 333
2008
+ },
2009
+ {
2010
+ "epoch": 0.55,
2011
+ "learning_rate": 8.737045139730605e-06,
2012
+ "loss": 0.4029,
2013
+ "step": 334
2014
+ },
2015
+ {
2016
+ "epoch": 0.56,
2017
+ "learning_rate": 8.683608557130608e-06,
2018
+ "loss": 0.3154,
2019
+ "step": 335
2020
+ },
2021
+ {
2022
+ "epoch": 0.56,
2023
+ "learning_rate": 8.63021019945504e-06,
2024
+ "loss": 0.3733,
2025
+ "step": 336
2026
+ },
2027
+ {
2028
+ "epoch": 0.56,
2029
+ "learning_rate": 8.576851617267151e-06,
2030
+ "loss": 0.3529,
2031
+ "step": 337
2032
+ },
2033
+ {
2034
+ "epoch": 0.56,
2035
+ "learning_rate": 8.52353435997519e-06,
2036
+ "loss": 0.3987,
2037
+ "step": 338
2038
+ },
2039
+ {
2040
+ "epoch": 0.56,
2041
+ "learning_rate": 8.470259975787438e-06,
2042
+ "loss": 0.3061,
2043
+ "step": 339
2044
+ },
2045
+ {
2046
+ "epoch": 0.56,
2047
+ "learning_rate": 8.417030011667241e-06,
2048
+ "loss": 0.4173,
2049
+ "step": 340
2050
+ },
2051
+ {
2052
+ "epoch": 0.57,
2053
+ "learning_rate": 8.363846013288096e-06,
2054
+ "loss": 0.3643,
2055
+ "step": 341
2056
+ },
2057
+ {
2058
+ "epoch": 0.57,
2059
+ "learning_rate": 8.310709524988743e-06,
2060
+ "loss": 0.3373,
2061
+ "step": 342
2062
+ },
2063
+ {
2064
+ "epoch": 0.57,
2065
+ "learning_rate": 8.257622089728362e-06,
2066
+ "loss": 0.3179,
2067
+ "step": 343
2068
+ },
2069
+ {
2070
+ "epoch": 0.57,
2071
+ "learning_rate": 8.20458524904174e-06,
2072
+ "loss": 0.3175,
2073
+ "step": 344
2074
+ },
2075
+ {
2076
+ "epoch": 0.57,
2077
+ "learning_rate": 8.151600542994506e-06,
2078
+ "loss": 0.2896,
2079
+ "step": 345
2080
+ },
2081
+ {
2082
+ "epoch": 0.57,
2083
+ "learning_rate": 8.098669510138438e-06,
2084
+ "loss": 0.4014,
2085
+ "step": 346
2086
+ },
2087
+ {
2088
+ "epoch": 0.58,
2089
+ "learning_rate": 8.045793687466757e-06,
2090
+ "loss": 0.2838,
2091
+ "step": 347
2092
+ },
2093
+ {
2094
+ "epoch": 0.58,
2095
+ "learning_rate": 7.992974610369521e-06,
2096
+ "loss": 0.2978,
2097
+ "step": 348
2098
+ },
2099
+ {
2100
+ "epoch": 0.58,
2101
+ "learning_rate": 7.940213812589018e-06,
2102
+ "loss": 0.3782,
2103
+ "step": 349
2104
+ },
2105
+ {
2106
+ "epoch": 0.58,
2107
+ "learning_rate": 7.887512826175247e-06,
2108
+ "loss": 0.303,
2109
+ "step": 350
2110
+ },
2111
+ {
2112
+ "epoch": 0.58,
2113
+ "learning_rate": 7.834873181441426e-06,
2114
+ "loss": 0.2952,
2115
+ "step": 351
2116
+ },
2117
+ {
2118
+ "epoch": 0.58,
2119
+ "learning_rate": 7.782296406919557e-06,
2120
+ "loss": 0.3432,
2121
+ "step": 352
2122
+ },
2123
+ {
2124
+ "epoch": 0.59,
2125
+ "learning_rate": 7.729784029316025e-06,
2126
+ "loss": 0.358,
2127
+ "step": 353
2128
+ },
2129
+ {
2130
+ "epoch": 0.59,
2131
+ "learning_rate": 7.677337573467294e-06,
2132
+ "loss": 0.245,
2133
+ "step": 354
2134
+ },
2135
+ {
2136
+ "epoch": 0.59,
2137
+ "learning_rate": 7.624958562295607e-06,
2138
+ "loss": 0.3722,
2139
+ "step": 355
2140
+ },
2141
+ {
2142
+ "epoch": 0.59,
2143
+ "learning_rate": 7.572648516764778e-06,
2144
+ "loss": 0.2774,
2145
+ "step": 356
2146
+ },
2147
+ {
2148
+ "epoch": 0.59,
2149
+ "learning_rate": 7.5204089558360076e-06,
2150
+ "loss": 0.2663,
2151
+ "step": 357
2152
+ },
2153
+ {
2154
+ "epoch": 0.59,
2155
+ "learning_rate": 7.468241396423801e-06,
2156
+ "loss": 0.3424,
2157
+ "step": 358
2158
+ },
2159
+ {
2160
+ "epoch": 0.6,
2161
+ "learning_rate": 7.416147353351909e-06,
2162
+ "loss": 0.3345,
2163
+ "step": 359
2164
+ },
2165
+ {
2166
+ "epoch": 0.6,
2167
+ "learning_rate": 7.364128339309326e-06,
2168
+ "loss": 0.3148,
2169
+ "step": 360
2170
+ },
2171
+ {
2172
+ "epoch": 0.6,
2173
+ "learning_rate": 7.312185864806391e-06,
2174
+ "loss": 0.23,
2175
+ "step": 361
2176
+ },
2177
+ {
2178
+ "epoch": 0.6,
2179
+ "learning_rate": 7.260321438130913e-06,
2180
+ "loss": 0.2941,
2181
+ "step": 362
2182
+ },
2183
+ {
2184
+ "epoch": 0.6,
2185
+ "learning_rate": 7.208536565304374e-06,
2186
+ "loss": 0.3063,
2187
+ "step": 363
2188
+ },
2189
+ {
2190
+ "epoch": 0.6,
2191
+ "learning_rate": 7.156832750038192e-06,
2192
+ "loss": 0.3427,
2193
+ "step": 364
2194
+ },
2195
+ {
2196
+ "epoch": 0.61,
2197
+ "learning_rate": 7.105211493690073e-06,
2198
+ "loss": 0.2931,
2199
+ "step": 365
2200
+ },
2201
+ {
2202
+ "epoch": 0.61,
2203
+ "learning_rate": 7.053674295220399e-06,
2204
+ "loss": 0.3494,
2205
+ "step": 366
2206
+ },
2207
+ {
2208
+ "epoch": 0.61,
2209
+ "learning_rate": 7.002222651148714e-06,
2210
+ "loss": 0.3027,
2211
+ "step": 367
2212
+ },
2213
+ {
2214
+ "epoch": 0.61,
2215
+ "learning_rate": 6.950858055510254e-06,
2216
+ "loss": 0.4092,
2217
+ "step": 368
2218
+ },
2219
+ {
2220
+ "epoch": 0.61,
2221
+ "learning_rate": 6.89958199981258e-06,
2222
+ "loss": 0.2926,
2223
+ "step": 369
2224
+ },
2225
+ {
2226
+ "epoch": 0.61,
2227
+ "learning_rate": 6.848395972992261e-06,
2228
+ "loss": 0.3025,
2229
+ "step": 370
2230
+ },
2231
+ {
2232
+ "epoch": 0.62,
2233
+ "learning_rate": 6.797301461371626e-06,
2234
+ "loss": 0.3664,
2235
+ "step": 371
2236
+ },
2237
+ {
2238
+ "epoch": 0.62,
2239
+ "learning_rate": 6.7462999486156315e-06,
2240
+ "loss": 0.2993,
2241
+ "step": 372
2242
+ },
2243
+ {
2244
+ "epoch": 0.62,
2245
+ "learning_rate": 6.695392915688759e-06,
2246
+ "loss": 0.2819,
2247
+ "step": 373
2248
+ },
2249
+ {
2250
+ "epoch": 0.62,
2251
+ "learning_rate": 6.644581840812019e-06,
2252
+ "loss": 0.2939,
2253
+ "step": 374
2254
+ },
2255
+ {
2256
+ "epoch": 0.62,
2257
+ "learning_rate": 6.593868199420017e-06,
2258
+ "loss": 0.3519,
2259
+ "step": 375
2260
+ },
2261
+ {
2262
+ "epoch": 0.62,
2263
+ "learning_rate": 6.543253464118131e-06,
2264
+ "loss": 0.2812,
2265
+ "step": 376
2266
+ },
2267
+ {
2268
+ "epoch": 0.63,
2269
+ "learning_rate": 6.492739104639727e-06,
2270
+ "loss": 0.3164,
2271
+ "step": 377
2272
+ },
2273
+ {
2274
+ "epoch": 0.63,
2275
+ "learning_rate": 6.4423265878035015e-06,
2276
+ "loss": 0.2927,
2277
+ "step": 378
2278
+ },
2279
+ {
2280
+ "epoch": 0.63,
2281
+ "learning_rate": 6.392017377470867e-06,
2282
+ "loss": 0.3023,
2283
+ "step": 379
2284
+ },
2285
+ {
2286
+ "epoch": 0.63,
2287
+ "learning_rate": 6.341812934503469e-06,
2288
+ "loss": 0.3367,
2289
+ "step": 380
2290
+ },
2291
+ {
2292
+ "epoch": 0.63,
2293
+ "learning_rate": 6.2917147167207495e-06,
2294
+ "loss": 0.3241,
2295
+ "step": 381
2296
+ },
2297
+ {
2298
+ "epoch": 0.63,
2299
+ "learning_rate": 6.241724178857621e-06,
2300
+ "loss": 0.3172,
2301
+ "step": 382
2302
+ },
2303
+ {
2304
+ "epoch": 0.64,
2305
+ "learning_rate": 6.191842772522214e-06,
2306
+ "loss": 0.2406,
2307
+ "step": 383
2308
+ },
2309
+ {
2310
+ "epoch": 0.64,
2311
+ "learning_rate": 6.142071946153751e-06,
2312
+ "loss": 0.2409,
2313
+ "step": 384
2314
+ },
2315
+ {
2316
+ "epoch": 0.64,
2317
+ "learning_rate": 6.092413144980465e-06,
2318
+ "loss": 0.2456,
2319
+ "step": 385
2320
+ },
2321
+ {
2322
+ "epoch": 0.64,
2323
+ "learning_rate": 6.04286781097763e-06,
2324
+ "loss": 0.2985,
2325
+ "step": 386
2326
+ },
2327
+ {
2328
+ "epoch": 0.64,
2329
+ "learning_rate": 5.993437382825711e-06,
2330
+ "loss": 0.2831,
2331
+ "step": 387
2332
+ },
2333
+ {
2334
+ "epoch": 0.64,
2335
+ "learning_rate": 5.944123295868574e-06,
2336
+ "loss": 0.295,
2337
+ "step": 388
2338
+ },
2339
+ {
2340
+ "epoch": 0.65,
2341
+ "learning_rate": 5.894926982071805e-06,
2342
+ "loss": 0.2861,
2343
+ "step": 389
2344
+ },
2345
+ {
2346
+ "epoch": 0.65,
2347
+ "learning_rate": 5.845849869981137e-06,
2348
+ "loss": 0.2892,
2349
+ "step": 390
2350
+ },
2351
+ {
2352
+ "epoch": 0.65,
2353
+ "learning_rate": 5.796893384680964e-06,
2354
+ "loss": 0.2481,
2355
+ "step": 391
2356
+ },
2357
+ {
2358
+ "epoch": 0.65,
2359
+ "learning_rate": 5.748058947752955e-06,
2360
+ "loss": 0.2612,
2361
+ "step": 392
2362
+ },
2363
+ {
2364
+ "epoch": 0.65,
2365
+ "learning_rate": 5.699347977234799e-06,
2366
+ "loss": 0.3099,
2367
+ "step": 393
2368
+ },
2369
+ {
2370
+ "epoch": 0.65,
2371
+ "learning_rate": 5.650761887578977e-06,
2372
+ "loss": 0.3021,
2373
+ "step": 394
2374
+ },
2375
+ {
2376
+ "epoch": 0.66,
2377
+ "learning_rate": 5.602302089611755e-06,
2378
+ "loss": 0.2706,
2379
+ "step": 395
2380
+ },
2381
+ {
2382
+ "epoch": 0.66,
2383
+ "learning_rate": 5.553969990492164e-06,
2384
+ "loss": 0.2866,
2385
+ "step": 396
2386
+ },
2387
+ {
2388
+ "epoch": 0.66,
2389
+ "learning_rate": 5.5057669936711625e-06,
2390
+ "loss": 0.3077,
2391
+ "step": 397
2392
+ },
2393
+ {
2394
+ "epoch": 0.66,
2395
+ "learning_rate": 5.457694498850892e-06,
2396
+ "loss": 0.3154,
2397
+ "step": 398
2398
+ },
2399
+ {
2400
+ "epoch": 0.66,
2401
+ "learning_rate": 5.409753901944006e-06,
2402
+ "loss": 0.221,
2403
+ "step": 399
2404
+ },
2405
+ {
2406
+ "epoch": 0.66,
2407
+ "learning_rate": 5.361946595033165e-06,
2408
+ "loss": 0.299,
2409
+ "step": 400
2410
+ },
2411
+ {
2412
+ "epoch": 0.67,
2413
+ "learning_rate": 5.314273966330591e-06,
2414
+ "loss": 0.3202,
2415
+ "step": 401
2416
+ },
2417
+ {
2418
+ "epoch": 0.67,
2419
+ "learning_rate": 5.266737400137765e-06,
2420
+ "loss": 0.2917,
2421
+ "step": 402
2422
+ },
2423
+ {
2424
+ "epoch": 0.67,
2425
+ "learning_rate": 5.219338276805243e-06,
2426
+ "loss": 0.1962,
2427
+ "step": 403
2428
+ },
2429
+ {
2430
+ "epoch": 0.67,
2431
+ "learning_rate": 5.172077972692553e-06,
2432
+ "loss": 0.2724,
2433
+ "step": 404
2434
+ },
2435
+ {
2436
+ "epoch": 0.67,
2437
+ "learning_rate": 5.124957860128237e-06,
2438
+ "loss": 0.294,
2439
+ "step": 405
2440
+ },
2441
+ {
2442
+ "epoch": 0.67,
2443
+ "learning_rate": 5.077979307370004e-06,
2444
+ "loss": 0.2373,
2445
+ "step": 406
2446
+ },
2447
+ {
2448
+ "epoch": 0.68,
2449
+ "learning_rate": 5.031143678565005e-06,
2450
+ "loss": 0.257,
2451
+ "step": 407
2452
+ },
2453
+ {
2454
+ "epoch": 0.68,
2455
+ "learning_rate": 4.984452333710207e-06,
2456
+ "loss": 0.2973,
2457
+ "step": 408
2458
+ },
2459
+ {
2460
+ "epoch": 0.68,
2461
+ "learning_rate": 4.937906628612905e-06,
2462
+ "loss": 0.2349,
2463
+ "step": 409
2464
+ },
2465
+ {
2466
+ "epoch": 0.68,
2467
+ "learning_rate": 4.89150791485137e-06,
2468
+ "loss": 0.2586,
2469
+ "step": 410
2470
+ },
2471
+ {
2472
+ "epoch": 0.68,
2473
+ "learning_rate": 4.845257539735577e-06,
2474
+ "loss": 0.2942,
2475
+ "step": 411
2476
+ },
2477
+ {
2478
+ "epoch": 0.68,
2479
+ "learning_rate": 4.7991568462680945e-06,
2480
+ "loss": 0.3138,
2481
+ "step": 412
2482
+ },
2483
+ {
2484
+ "epoch": 0.69,
2485
+ "learning_rate": 4.7532071731050975e-06,
2486
+ "loss": 0.1886,
2487
+ "step": 413
2488
+ },
2489
+ {
2490
+ "epoch": 0.69,
2491
+ "learning_rate": 4.707409854517471e-06,
2492
+ "loss": 0.2804,
2493
+ "step": 414
2494
+ },
2495
+ {
2496
+ "epoch": 0.69,
2497
+ "learning_rate": 4.661766220352098e-06,
2498
+ "loss": 0.3557,
2499
+ "step": 415
2500
+ },
2501
+ {
2502
+ "epoch": 0.69,
2503
+ "learning_rate": 4.616277595993196e-06,
2504
+ "loss": 0.2548,
2505
+ "step": 416
2506
+ },
2507
+ {
2508
+ "epoch": 0.69,
2509
+ "learning_rate": 4.57094530232389e-06,
2510
+ "loss": 0.218,
2511
+ "step": 417
2512
+ },
2513
+ {
2514
+ "epoch": 0.69,
2515
+ "learning_rate": 4.525770655687821e-06,
2516
+ "loss": 0.2302,
2517
+ "step": 418
2518
+ },
2519
+ {
2520
+ "epoch": 0.7,
2521
+ "learning_rate": 4.48075496785092e-06,
2522
+ "loss": 0.2652,
2523
+ "step": 419
2524
+ },
2525
+ {
2526
+ "epoch": 0.7,
2527
+ "learning_rate": 4.435899545963333e-06,
2528
+ "loss": 0.1879,
2529
+ "step": 420
2530
+ },
2531
+ {
2532
+ "epoch": 0.7,
2533
+ "learning_rate": 4.391205692521453e-06,
2534
+ "loss": 0.2553,
2535
+ "step": 421
2536
+ },
2537
+ {
2538
+ "epoch": 0.7,
2539
+ "learning_rate": 4.346674705330117e-06,
2540
+ "loss": 0.2334,
2541
+ "step": 422
2542
+ },
2543
+ {
2544
+ "epoch": 0.7,
2545
+ "learning_rate": 4.302307877464893e-06,
2546
+ "loss": 0.1971,
2547
+ "step": 423
2548
+ },
2549
+ {
2550
+ "epoch": 0.7,
2551
+ "learning_rate": 4.258106497234551e-06,
2552
+ "loss": 0.2759,
2553
+ "step": 424
2554
+ },
2555
+ {
2556
+ "epoch": 0.71,
2557
+ "learning_rate": 4.214071848143655e-06,
2558
+ "loss": 0.2923,
2559
+ "step": 425
2560
+ },
2561
+ {
2562
+ "epoch": 0.71,
2563
+ "learning_rate": 4.170205208855281e-06,
2564
+ "loss": 0.2144,
2565
+ "step": 426
2566
+ },
2567
+ {
2568
+ "epoch": 0.71,
2569
+ "learning_rate": 4.126507853153891e-06,
2570
+ "loss": 0.2532,
2571
+ "step": 427
2572
+ },
2573
+ {
2574
+ "epoch": 0.71,
2575
+ "learning_rate": 4.082981049908362e-06,
2576
+ "loss": 0.2631,
2577
+ "step": 428
2578
+ },
2579
+ {
2580
+ "epoch": 0.71,
2581
+ "learning_rate": 4.039626063035107e-06,
2582
+ "loss": 0.3083,
2583
+ "step": 429
2584
+ },
2585
+ {
2586
+ "epoch": 0.71,
2587
+ "learning_rate": 3.996444151461417e-06,
2588
+ "loss": 0.2683,
2589
+ "step": 430
2590
+ },
2591
+ {
2592
+ "epoch": 0.72,
2593
+ "learning_rate": 3.953436569088856e-06,
2594
+ "loss": 0.3167,
2595
+ "step": 431
2596
+ },
2597
+ {
2598
+ "epoch": 0.72,
2599
+ "learning_rate": 3.9106045647569005e-06,
2600
+ "loss": 0.2403,
2601
+ "step": 432
2602
+ },
2603
+ {
2604
+ "epoch": 0.72,
2605
+ "learning_rate": 3.867949382206632e-06,
2606
+ "loss": 0.2376,
2607
+ "step": 433
2608
+ },
2609
+ {
2610
+ "epoch": 0.72,
2611
+ "learning_rate": 3.825472260044658e-06,
2612
+ "loss": 0.2971,
2613
+ "step": 434
2614
+ },
2615
+ {
2616
+ "epoch": 0.72,
2617
+ "learning_rate": 3.7831744317071194e-06,
2618
+ "loss": 0.2577,
2619
+ "step": 435
2620
+ },
2621
+ {
2622
+ "epoch": 0.72,
2623
+ "learning_rate": 3.7410571254238835e-06,
2624
+ "loss": 0.2485,
2625
+ "step": 436
2626
+ },
2627
+ {
2628
+ "epoch": 0.73,
2629
+ "learning_rate": 3.6991215641828903e-06,
2630
+ "loss": 0.2357,
2631
+ "step": 437
2632
+ },
2633
+ {
2634
+ "epoch": 0.73,
2635
+ "learning_rate": 3.6573689656946177e-06,
2636
+ "loss": 0.2413,
2637
+ "step": 438
2638
+ },
2639
+ {
2640
+ "epoch": 0.73,
2641
+ "learning_rate": 3.615800542356738e-06,
2642
+ "loss": 0.2159,
2643
+ "step": 439
2644
+ },
2645
+ {
2646
+ "epoch": 0.73,
2647
+ "learning_rate": 3.574417501218913e-06,
2648
+ "loss": 0.2191,
2649
+ "step": 440
2650
+ },
2651
+ {
2652
+ "epoch": 0.73,
2653
+ "learning_rate": 3.5332210439477334e-06,
2654
+ "loss": 0.274,
2655
+ "step": 441
2656
+ },
2657
+ {
2658
+ "epoch": 0.73,
2659
+ "learning_rate": 3.4922123667918305e-06,
2660
+ "loss": 0.1954,
2661
+ "step": 442
2662
+ },
2663
+ {
2664
+ "epoch": 0.74,
2665
+ "learning_rate": 3.4513926605471504e-06,
2666
+ "loss": 0.21,
2667
+ "step": 443
2668
+ },
2669
+ {
2670
+ "epoch": 0.74,
2671
+ "learning_rate": 3.4107631105223528e-06,
2672
+ "loss": 0.2699,
2673
+ "step": 444
2674
+ },
2675
+ {
2676
+ "epoch": 0.74,
2677
+ "learning_rate": 3.3703248965044253e-06,
2678
+ "loss": 0.2294,
2679
+ "step": 445
2680
+ },
2681
+ {
2682
+ "epoch": 0.74,
2683
+ "learning_rate": 3.330079192724379e-06,
2684
+ "loss": 0.2539,
2685
+ "step": 446
2686
+ },
2687
+ {
2688
+ "epoch": 0.74,
2689
+ "learning_rate": 3.2900271678232045e-06,
2690
+ "loss": 0.2823,
2691
+ "step": 447
2692
+ },
2693
+ {
2694
+ "epoch": 0.74,
2695
+ "learning_rate": 3.250169984817897e-06,
2696
+ "loss": 0.2871,
2697
+ "step": 448
2698
+ },
2699
+ {
2700
+ "epoch": 0.75,
2701
+ "learning_rate": 3.2105088010677e-06,
2702
+ "loss": 0.2456,
2703
+ "step": 449
2704
+ },
2705
+ {
2706
+ "epoch": 0.75,
2707
+ "learning_rate": 3.171044768240508e-06,
2708
+ "loss": 0.3168,
2709
+ "step": 450
2710
+ },
2711
+ {
2712
+ "epoch": 0.75,
2713
+ "learning_rate": 3.131779032279397e-06,
2714
+ "loss": 0.2354,
2715
+ "step": 451
2716
+ },
2717
+ {
2718
+ "epoch": 0.75,
2719
+ "learning_rate": 3.0927127333693872e-06,
2720
+ "loss": 0.182,
2721
+ "step": 452
2722
+ },
2723
+ {
2724
+ "epoch": 0.75,
2725
+ "learning_rate": 3.053847005904298e-06,
2726
+ "loss": 0.2304,
2727
+ "step": 453
2728
+ },
2729
+ {
2730
+ "epoch": 0.75,
2731
+ "learning_rate": 3.0151829784538257e-06,
2732
+ "loss": 0.2312,
2733
+ "step": 454
2734
+ },
2735
+ {
2736
+ "epoch": 0.76,
2737
+ "learning_rate": 2.9767217737307805e-06,
2738
+ "loss": 0.2553,
2739
+ "step": 455
2740
+ },
2741
+ {
2742
+ "epoch": 0.76,
2743
+ "learning_rate": 2.938464508558466e-06,
2744
+ "loss": 0.245,
2745
+ "step": 456
2746
+ },
2747
+ {
2748
+ "epoch": 0.76,
2749
+ "learning_rate": 2.9004122938382617e-06,
2750
+ "loss": 0.1771,
2751
+ "step": 457
2752
+ },
2753
+ {
2754
+ "epoch": 0.76,
2755
+ "learning_rate": 2.86256623451736e-06,
2756
+ "loss": 0.2863,
2757
+ "step": 458
2758
+ },
2759
+ {
2760
+ "epoch": 0.76,
2761
+ "learning_rate": 2.8249274295566863e-06,
2762
+ "loss": 0.255,
2763
+ "step": 459
2764
+ },
2765
+ {
2766
+ "epoch": 0.76,
2767
+ "learning_rate": 2.7874969718989943e-06,
2768
+ "loss": 0.2148,
2769
+ "step": 460
2770
+ },
2771
+ {
2772
+ "epoch": 0.77,
2773
+ "learning_rate": 2.7502759484370946e-06,
2774
+ "loss": 0.2717,
2775
+ "step": 461
2776
+ },
2777
+ {
2778
+ "epoch": 0.77,
2779
+ "learning_rate": 2.7132654399823444e-06,
2780
+ "loss": 0.2368,
2781
+ "step": 462
2782
+ },
2783
+ {
2784
+ "epoch": 0.77,
2785
+ "learning_rate": 2.676466521233225e-06,
2786
+ "loss": 0.1757,
2787
+ "step": 463
2788
+ },
2789
+ {
2790
+ "epoch": 0.77,
2791
+ "learning_rate": 2.639880260744151e-06,
2792
+ "loss": 0.2064,
2793
+ "step": 464
2794
+ },
2795
+ {
2796
+ "epoch": 0.77,
2797
+ "learning_rate": 2.6035077208944416e-06,
2798
+ "loss": 0.2223,
2799
+ "step": 465
2800
+ },
2801
+ {
2802
+ "epoch": 0.77,
2803
+ "learning_rate": 2.5673499578574644e-06,
2804
+ "loss": 0.2975,
2805
+ "step": 466
2806
+ },
2807
+ {
2808
+ "epoch": 0.78,
2809
+ "learning_rate": 2.5314080215699822e-06,
2810
+ "loss": 0.2544,
2811
+ "step": 467
2812
+ },
2813
+ {
2814
+ "epoch": 0.78,
2815
+ "learning_rate": 2.4956829557016336e-06,
2816
+ "loss": 0.249,
2817
+ "step": 468
2818
+ },
2819
+ {
2820
+ "epoch": 0.78,
2821
+ "learning_rate": 2.4601757976246685e-06,
2822
+ "loss": 0.2561,
2823
+ "step": 469
2824
+ },
2825
+ {
2826
+ "epoch": 0.78,
2827
+ "learning_rate": 2.424887578383799e-06,
2828
+ "loss": 0.2409,
2829
+ "step": 470
2830
+ },
2831
+ {
2832
+ "epoch": 0.78,
2833
+ "learning_rate": 2.389819322666264e-06,
2834
+ "loss": 0.2547,
2835
+ "step": 471
2836
+ },
2837
+ {
2838
+ "epoch": 0.78,
2839
+ "learning_rate": 2.354972048772074e-06,
2840
+ "loss": 0.2415,
2841
+ "step": 472
2842
+ },
2843
+ {
2844
+ "epoch": 0.79,
2845
+ "learning_rate": 2.320346768584449e-06,
2846
+ "loss": 0.2592,
2847
+ "step": 473
2848
+ },
2849
+ {
2850
+ "epoch": 0.79,
2851
+ "learning_rate": 2.2859444875404347e-06,
2852
+ "loss": 0.2757,
2853
+ "step": 474
2854
+ },
2855
+ {
2856
+ "epoch": 0.79,
2857
+ "learning_rate": 2.2517662046016975e-06,
2858
+ "loss": 0.1666,
2859
+ "step": 475
2860
+ },
2861
+ {
2862
+ "epoch": 0.79,
2863
+ "learning_rate": 2.2178129122255255e-06,
2864
+ "loss": 0.1428,
2865
+ "step": 476
2866
+ },
2867
+ {
2868
+ "epoch": 0.79,
2869
+ "learning_rate": 2.184085596336011e-06,
2870
+ "loss": 0.204,
2871
+ "step": 477
2872
+ },
2873
+ {
2874
+ "epoch": 0.79,
2875
+ "learning_rate": 2.150585236295415e-06,
2876
+ "loss": 0.2266,
2877
+ "step": 478
2878
+ },
2879
+ {
2880
+ "epoch": 0.8,
2881
+ "learning_rate": 2.1173128048757307e-06,
2882
+ "loss": 0.2414,
2883
+ "step": 479
2884
+ },
2885
+ {
2886
+ "epoch": 0.8,
2887
+ "learning_rate": 2.0842692682304442e-06,
2888
+ "loss": 0.2231,
2889
+ "step": 480
2890
+ },
2891
+ {
2892
+ "epoch": 0.8,
2893
+ "learning_rate": 2.0514555858664663e-06,
2894
+ "loss": 0.2148,
2895
+ "step": 481
2896
+ },
2897
+ {
2898
+ "epoch": 0.8,
2899
+ "learning_rate": 2.0188727106162874e-06,
2900
+ "loss": 0.2468,
2901
+ "step": 482
2902
+ },
2903
+ {
2904
+ "epoch": 0.8,
2905
+ "learning_rate": 1.986521588610285e-06,
2906
+ "loss": 0.1853,
2907
+ "step": 483
2908
+ },
2909
+ {
2910
+ "epoch": 0.8,
2911
+ "learning_rate": 1.9544031592492763e-06,
2912
+ "loss": 0.2459,
2913
+ "step": 484
2914
+ },
2915
+ {
2916
+ "epoch": 0.81,
2917
+ "learning_rate": 1.922518355177232e-06,
2918
+ "loss": 0.239,
2919
+ "step": 485
2920
+ },
2921
+ {
2922
+ "epoch": 0.81,
2923
+ "learning_rate": 1.890868102254182e-06,
2924
+ "loss": 0.1963,
2925
+ "step": 486
2926
+ },
2927
+ {
2928
+ "epoch": 0.81,
2929
+ "learning_rate": 1.859453319529343e-06,
2930
+ "loss": 0.1815,
2931
+ "step": 487
2932
+ },
2933
+ {
2934
+ "epoch": 0.81,
2935
+ "learning_rate": 1.82827491921443e-06,
2936
+ "loss": 0.2342,
2937
+ "step": 488
2938
+ },
2939
+ {
2940
+ "epoch": 0.81,
2941
+ "learning_rate": 1.797333806657171e-06,
2942
+ "loss": 0.2527,
2943
+ "step": 489
2944
+ },
2945
+ {
2946
+ "epoch": 0.81,
2947
+ "learning_rate": 1.7666308803150045e-06,
2948
+ "loss": 0.2313,
2949
+ "step": 490
2950
+ },
2951
+ {
2952
+ "epoch": 0.82,
2953
+ "learning_rate": 1.7361670317290014e-06,
2954
+ "loss": 0.2199,
2955
+ "step": 491
2956
+ },
2957
+ {
2958
+ "epoch": 0.82,
2959
+ "learning_rate": 1.7059431454979825e-06,
2960
+ "loss": 0.2708,
2961
+ "step": 492
2962
+ },
2963
+ {
2964
+ "epoch": 0.82,
2965
+ "learning_rate": 1.6759600992528147e-06,
2966
+ "loss": 0.2499,
2967
+ "step": 493
2968
+ },
2969
+ {
2970
+ "epoch": 0.82,
2971
+ "learning_rate": 1.6462187636309345e-06,
2972
+ "loss": 0.1915,
2973
+ "step": 494
2974
+ },
2975
+ {
2976
+ "epoch": 0.82,
2977
+ "learning_rate": 1.6167200022510799e-06,
2978
+ "loss": 0.2494,
2979
+ "step": 495
2980
+ },
2981
+ {
2982
+ "epoch": 0.82,
2983
+ "learning_rate": 1.587464671688187e-06,
2984
+ "loss": 0.2037,
2985
+ "step": 496
2986
+ },
2987
+ {
2988
+ "epoch": 0.83,
2989
+ "learning_rate": 1.5584536214485457e-06,
2990
+ "loss": 0.1655,
2991
+ "step": 497
2992
+ },
2993
+ {
2994
+ "epoch": 0.83,
2995
+ "learning_rate": 1.5296876939450978e-06,
2996
+ "loss": 0.2213,
2997
+ "step": 498
2998
+ },
2999
+ {
3000
+ "epoch": 0.83,
3001
+ "learning_rate": 1.501167724473016e-06,
3002
+ "loss": 0.2324,
3003
+ "step": 499
3004
+ },
3005
+ {
3006
+ "epoch": 0.83,
3007
+ "learning_rate": 1.4728945411854135e-06,
3008
+ "loss": 0.2378,
3009
+ "step": 500
3010
+ },
3011
+ {
3012
+ "epoch": 0.83,
3013
+ "learning_rate": 1.444868965069315e-06,
3014
+ "loss": 0.1851,
3015
+ "step": 501
3016
+ },
3017
+ {
3018
+ "epoch": 0.83,
3019
+ "learning_rate": 1.4170918099218166e-06,
3020
+ "loss": 0.3088,
3021
+ "step": 502
3022
+ },
3023
+ {
3024
+ "epoch": 0.84,
3025
+ "learning_rate": 1.3895638823264447e-06,
3026
+ "loss": 0.24,
3027
+ "step": 503
3028
+ },
3029
+ {
3030
+ "epoch": 0.84,
3031
+ "learning_rate": 1.3622859816297473e-06,
3032
+ "loss": 0.2054,
3033
+ "step": 504
3034
+ },
3035
+ {
3036
+ "epoch": 0.84,
3037
+ "learning_rate": 1.3352588999180726e-06,
3038
+ "loss": 0.2595,
3039
+ "step": 505
3040
+ },
3041
+ {
3042
+ "epoch": 0.84,
3043
+ "learning_rate": 1.3084834219945731e-06,
3044
+ "loss": 0.2321,
3045
+ "step": 506
3046
+ },
3047
+ {
3048
+ "epoch": 0.84,
3049
+ "learning_rate": 1.2819603253564206e-06,
3050
+ "loss": 0.2112,
3051
+ "step": 507
3052
+ },
3053
+ {
3054
+ "epoch": 0.84,
3055
+ "learning_rate": 1.255690380172222e-06,
3056
+ "loss": 0.222,
3057
+ "step": 508
3058
+ },
3059
+ {
3060
+ "epoch": 0.85,
3061
+ "learning_rate": 1.2296743492596587e-06,
3062
+ "loss": 0.3065,
3063
+ "step": 509
3064
+ },
3065
+ {
3066
+ "epoch": 0.85,
3067
+ "learning_rate": 1.203912988063335e-06,
3068
+ "loss": 0.2594,
3069
+ "step": 510
3070
+ },
3071
+ {
3072
+ "epoch": 0.85,
3073
+ "learning_rate": 1.1784070446328477e-06,
3074
+ "loss": 0.1897,
3075
+ "step": 511
3076
+ },
3077
+ {
3078
+ "epoch": 0.85,
3079
+ "learning_rate": 1.153157259601062e-06,
3080
+ "loss": 0.1806,
3081
+ "step": 512
3082
+ },
3083
+ {
3084
+ "epoch": 0.85,
3085
+ "learning_rate": 1.1281643661625896e-06,
3086
+ "loss": 0.2801,
3087
+ "step": 513
3088
+ },
3089
+ {
3090
+ "epoch": 0.85,
3091
+ "learning_rate": 1.1034290900525279e-06,
3092
+ "loss": 0.2051,
3093
+ "step": 514
3094
+ },
3095
+ {
3096
+ "epoch": 0.86,
3097
+ "learning_rate": 1.078952149525362e-06,
3098
+ "loss": 0.232,
3099
+ "step": 515
3100
+ },
3101
+ {
3102
+ "epoch": 0.86,
3103
+ "learning_rate": 1.0547342553341144e-06,
3104
+ "loss": 0.1894,
3105
+ "step": 516
3106
+ },
3107
+ {
3108
+ "epoch": 0.86,
3109
+ "learning_rate": 1.030776110709718e-06,
3110
+ "loss": 0.2261,
3111
+ "step": 517
3112
+ },
3113
+ {
3114
+ "epoch": 0.86,
3115
+ "learning_rate": 1.0070784113405763e-06,
3116
+ "loss": 0.2517,
3117
+ "step": 518
3118
+ },
3119
+ {
3120
+ "epoch": 0.86,
3121
+ "learning_rate": 9.836418453523833e-07,
3122
+ "loss": 0.2008,
3123
+ "step": 519
3124
+ },
3125
+ {
3126
+ "epoch": 0.86,
3127
+ "learning_rate": 9.604670932881211e-07,
3128
+ "loss": 0.2296,
3129
+ "step": 520
3130
+ },
3131
+ {
3132
+ "epoch": 0.87,
3133
+ "learning_rate": 9.375548280883129e-07,
3134
+ "loss": 0.2176,
3135
+ "step": 521
3136
+ },
3137
+ {
3138
+ "epoch": 0.87,
3139
+ "learning_rate": 9.149057150714802e-07,
3140
+ "loss": 0.2145,
3141
+ "step": 522
3142
+ },
3143
+ {
3144
+ "epoch": 0.87,
3145
+ "learning_rate": 8.925204119148189e-07,
3146
+ "loss": 0.2103,
3147
+ "step": 523
3148
+ },
3149
+ {
3150
+ "epoch": 0.87,
3151
+ "learning_rate": 8.703995686351041e-07,
3152
+ "loss": 0.2677,
3153
+ "step": 524
3154
+ },
3155
+ {
3156
+ "epoch": 0.87,
3157
+ "learning_rate": 8.485438275698154e-07,
3158
+ "loss": 0.2143,
3159
+ "step": 525
3160
+ },
3161
+ {
3162
+ "epoch": 0.87,
3163
+ "learning_rate": 8.269538233584884e-07,
3164
+ "loss": 0.1758,
3165
+ "step": 526
3166
+ },
3167
+ {
3168
+ "epoch": 0.88,
3169
+ "learning_rate": 8.056301829242785e-07,
3170
+ "loss": 0.2168,
3171
+ "step": 527
3172
+ },
3173
+ {
3174
+ "epoch": 0.88,
3175
+ "learning_rate": 7.845735254557608e-07,
3176
+ "loss": 0.2606,
3177
+ "step": 528
3178
+ },
3179
+ {
3180
+ "epoch": 0.88,
3181
+ "learning_rate": 7.637844623889557e-07,
3182
+ "loss": 0.1909,
3183
+ "step": 529
3184
+ },
3185
+ {
3186
+ "epoch": 0.88,
3187
+ "learning_rate": 7.432635973895652e-07,
3188
+ "loss": 0.198,
3189
+ "step": 530
3190
+ },
3191
+ {
3192
+ "epoch": 0.88,
3193
+ "learning_rate": 7.230115263354431e-07,
3194
+ "loss": 0.1598,
3195
+ "step": 531
3196
+ },
3197
+ {
3198
+ "epoch": 0.88,
3199
+ "learning_rate": 7.030288372993066e-07,
3200
+ "loss": 0.1778,
3201
+ "step": 532
3202
+ },
3203
+ {
3204
+ "epoch": 0.89,
3205
+ "learning_rate": 6.833161105316421e-07,
3206
+ "loss": 0.1455,
3207
+ "step": 533
3208
+ },
3209
+ {
3210
+ "epoch": 0.89,
3211
+ "learning_rate": 6.638739184438681e-07,
3212
+ "loss": 0.2497,
3213
+ "step": 534
3214
+ },
3215
+ {
3216
+ "epoch": 0.89,
3217
+ "learning_rate": 6.447028255917054e-07,
3218
+ "loss": 0.2006,
3219
+ "step": 535
3220
+ },
3221
+ {
3222
+ "epoch": 0.89,
3223
+ "learning_rate": 6.258033886587911e-07,
3224
+ "loss": 0.2817,
3225
+ "step": 536
3226
+ },
3227
+ {
3228
+ "epoch": 0.89,
3229
+ "learning_rate": 6.071761564405121e-07,
3230
+ "loss": 0.1753,
3231
+ "step": 537
3232
+ },
3233
+ {
3234
+ "epoch": 0.89,
3235
+ "learning_rate": 5.888216698280646e-07,
3236
+ "loss": 0.2139,
3237
+ "step": 538
3238
+ },
3239
+ {
3240
+ "epoch": 0.9,
3241
+ "learning_rate": 5.707404617927526e-07,
3242
+ "loss": 0.229,
3243
+ "step": 539
3244
+ },
3245
+ {
3246
+ "epoch": 0.9,
3247
+ "learning_rate": 5.529330573705083e-07,
3248
+ "loss": 0.2406,
3249
+ "step": 540
3250
+ },
3251
+ {
3252
+ "epoch": 0.9,
3253
+ "learning_rate": 5.353999736466531e-07,
3254
+ "loss": 0.197,
3255
+ "step": 541
3256
+ },
3257
+ {
3258
+ "epoch": 0.9,
3259
+ "learning_rate": 5.181417197408733e-07,
3260
+ "loss": 0.2249,
3261
+ "step": 542
3262
+ },
3263
+ {
3264
+ "epoch": 0.9,
3265
+ "learning_rate": 5.011587967924414e-07,
3266
+ "loss": 0.2058,
3267
+ "step": 543
3268
+ },
3269
+ {
3270
+ "epoch": 0.9,
3271
+ "learning_rate": 4.844516979456671e-07,
3272
+ "loss": 0.3333,
3273
+ "step": 544
3274
+ },
3275
+ {
3276
+ "epoch": 0.91,
3277
+ "learning_rate": 4.6802090833557136e-07,
3278
+ "loss": 0.2527,
3279
+ "step": 545
3280
+ },
3281
+ {
3282
+ "epoch": 0.91,
3283
+ "learning_rate": 4.5186690507379894e-07,
3284
+ "loss": 0.2259,
3285
+ "step": 546
3286
+ },
3287
+ {
3288
+ "epoch": 0.91,
3289
+ "learning_rate": 4.359901572347758e-07,
3290
+ "loss": 0.2049,
3291
+ "step": 547
3292
+ },
3293
+ {
3294
+ "epoch": 0.91,
3295
+ "learning_rate": 4.203911258420712e-07,
3296
+ "loss": 0.2262,
3297
+ "step": 548
3298
+ },
3299
+ {
3300
+ "epoch": 0.91,
3301
+ "learning_rate": 4.0507026385502747e-07,
3302
+ "loss": 0.1843,
3303
+ "step": 549
3304
+ },
3305
+ {
3306
+ "epoch": 0.91,
3307
+ "learning_rate": 3.9002801615558805e-07,
3308
+ "loss": 0.2131,
3309
+ "step": 550
3310
+ },
3311
+ {
3312
+ "epoch": 0.92,
3313
+ "learning_rate": 3.7526481953539915e-07,
3314
+ "loss": 0.2956,
3315
+ "step": 551
3316
+ },
3317
+ {
3318
+ "epoch": 0.92,
3319
+ "learning_rate": 3.607811026831176e-07,
3320
+ "loss": 0.2117,
3321
+ "step": 552
3322
+ },
3323
+ {
3324
+ "epoch": 0.92,
3325
+ "learning_rate": 3.4657728617195295e-07,
3326
+ "loss": 0.217,
3327
+ "step": 553
3328
+ },
3329
+ {
3330
+ "epoch": 0.92,
3331
+ "learning_rate": 3.32653782447474e-07,
3332
+ "loss": 0.2173,
3333
+ "step": 554
3334
+ },
3335
+ {
3336
+ "epoch": 0.92,
3337
+ "learning_rate": 3.1901099581561846e-07,
3338
+ "loss": 0.1826,
3339
+ "step": 555
3340
+ },
3341
+ {
3342
+ "epoch": 0.92,
3343
+ "learning_rate": 3.056493224309587e-07,
3344
+ "loss": 0.306,
3345
+ "step": 556
3346
+ },
3347
+ {
3348
+ "epoch": 0.93,
3349
+ "learning_rate": 2.9256915028519575e-07,
3350
+ "loss": 0.1949,
3351
+ "step": 557
3352
+ },
3353
+ {
3354
+ "epoch": 0.93,
3355
+ "learning_rate": 2.7977085919589253e-07,
3356
+ "loss": 0.1905,
3357
+ "step": 558
3358
+ },
3359
+ {
3360
+ "epoch": 0.93,
3361
+ "learning_rate": 2.672548207954495e-07,
3362
+ "loss": 0.2251,
3363
+ "step": 559
3364
+ },
3365
+ {
3366
+ "epoch": 0.93,
3367
+ "learning_rate": 2.550213985203076e-07,
3368
+ "loss": 0.2097,
3369
+ "step": 560
3370
+ },
3371
+ {
3372
+ "epoch": 0.93,
3373
+ "learning_rate": 2.430709476003978e-07,
3374
+ "loss": 0.2342,
3375
+ "step": 561
3376
+ },
3377
+ {
3378
+ "epoch": 0.93,
3379
+ "learning_rate": 2.3140381504882736e-07,
3380
+ "loss": 0.198,
3381
+ "step": 562
3382
+ },
3383
+ {
3384
+ "epoch": 0.94,
3385
+ "learning_rate": 2.200203396517997e-07,
3386
+ "loss": 0.1558,
3387
+ "step": 563
3388
+ },
3389
+ {
3390
+ "epoch": 0.94,
3391
+ "learning_rate": 2.0892085195878154e-07,
3392
+ "loss": 0.2013,
3393
+ "step": 564
3394
+ },
3395
+ {
3396
+ "epoch": 0.94,
3397
+ "learning_rate": 1.9810567427289596e-07,
3398
+ "loss": 0.2878,
3399
+ "step": 565
3400
+ },
3401
+ {
3402
+ "epoch": 0.94,
3403
+ "learning_rate": 1.8757512064157658e-07,
3404
+ "loss": 0.2805,
3405
+ "step": 566
3406
+ },
3407
+ {
3408
+ "epoch": 0.94,
3409
+ "learning_rate": 1.7732949684743593e-07,
3410
+ "loss": 0.1875,
3411
+ "step": 567
3412
+ },
3413
+ {
3414
+ "epoch": 0.94,
3415
+ "learning_rate": 1.6736910039939159e-07,
3416
+ "loss": 0.2391,
3417
+ "step": 568
3418
+ },
3419
+ {
3420
+ "epoch": 0.95,
3421
+ "learning_rate": 1.5769422052403172e-07,
3422
+ "loss": 0.2417,
3423
+ "step": 569
3424
+ },
3425
+ {
3426
+ "epoch": 0.95,
3427
+ "learning_rate": 1.483051381572076e-07,
3428
+ "loss": 0.1948,
3429
+ "step": 570
3430
+ },
3431
+ {
3432
+ "epoch": 0.95,
3433
+ "learning_rate": 1.3920212593588113e-07,
3434
+ "loss": 0.2577,
3435
+ "step": 571
3436
+ },
3437
+ {
3438
+ "epoch": 0.95,
3439
+ "learning_rate": 1.303854481902067e-07,
3440
+ "loss": 0.1837,
3441
+ "step": 572
3442
+ },
3443
+ {
3444
+ "epoch": 0.95,
3445
+ "learning_rate": 1.218553609358575e-07,
3446
+ "loss": 0.2045,
3447
+ "step": 573
3448
+ },
3449
+ {
3450
+ "epoch": 0.95,
3451
+ "learning_rate": 1.1361211186658893e-07,
3452
+ "loss": 0.1795,
3453
+ "step": 574
3454
+ },
3455
+ {
3456
+ "epoch": 0.96,
3457
+ "learning_rate": 1.0565594034704918e-07,
3458
+ "loss": 0.2652,
3459
+ "step": 575
3460
+ },
3461
+ {
3462
+ "epoch": 0.96,
3463
+ "learning_rate": 9.798707740582447e-08,
3464
+ "loss": 0.1932,
3465
+ "step": 576
3466
+ },
3467
+ {
3468
+ "epoch": 0.96,
3469
+ "learning_rate": 9.060574572873238e-08,
3470
+ "loss": 0.1601,
3471
+ "step": 577
3472
+ },
3473
+ {
3474
+ "epoch": 0.96,
3475
+ "learning_rate": 8.351215965235915e-08,
3476
+ "loss": 0.1875,
3477
+ "step": 578
3478
+ },
3479
+ {
3480
+ "epoch": 0.96,
3481
+ "learning_rate": 7.670652515782917e-08,
3482
+ "loss": 0.2563,
3483
+ "step": 579
3484
+ },
3485
+ {
3486
+ "epoch": 0.96,
3487
+ "learning_rate": 7.018903986483083e-08,
3488
+ "loss": 0.2188,
3489
+ "step": 580
3490
+ },
3491
+ {
3492
+ "epoch": 0.97,
3493
+ "learning_rate": 6.395989302587113e-08,
3494
+ "loss": 0.2162,
3495
+ "step": 581
3496
+ },
3497
+ {
3498
+ "epoch": 0.97,
3499
+ "learning_rate": 5.801926552078563e-08,
3500
+ "loss": 0.1879,
3501
+ "step": 582
3502
+ },
3503
+ {
3504
+ "epoch": 0.97,
3505
+ "learning_rate": 5.236732985148374e-08,
3506
+ "loss": 0.2181,
3507
+ "step": 583
3508
+ },
3509
+ {
3510
+ "epoch": 0.97,
3511
+ "learning_rate": 4.7004250136940547e-08,
3512
+ "loss": 0.1975,
3513
+ "step": 584
3514
+ },
3515
+ {
3516
+ "epoch": 0.97,
3517
+ "learning_rate": 4.1930182108430584e-08,
3518
+ "loss": 0.1885,
3519
+ "step": 585
3520
+ },
3521
+ {
3522
+ "epoch": 0.97,
3523
+ "learning_rate": 3.714527310500371e-08,
3524
+ "loss": 0.1943,
3525
+ "step": 586
3526
+ },
3527
+ {
3528
+ "epoch": 0.98,
3529
+ "learning_rate": 3.264966206921294e-08,
3530
+ "loss": 0.1817,
3531
+ "step": 587
3532
+ },
3533
+ {
3534
+ "epoch": 0.98,
3535
+ "learning_rate": 2.8443479543073248e-08,
3536
+ "loss": 0.295,
3537
+ "step": 588
3538
+ },
3539
+ {
3540
+ "epoch": 0.98,
3541
+ "learning_rate": 2.4526847664273488e-08,
3542
+ "loss": 0.2196,
3543
+ "step": 589
3544
+ },
3545
+ {
3546
+ "epoch": 0.98,
3547
+ "learning_rate": 2.0899880162630336e-08,
3548
+ "loss": 0.2263,
3549
+ "step": 590
3550
+ },
3551
+ {
3552
+ "epoch": 0.98,
3553
+ "learning_rate": 1.7562682356786488e-08,
3554
+ "loss": 0.2453,
3555
+ "step": 591
3556
+ },
3557
+ {
3558
+ "epoch": 0.98,
3559
+ "learning_rate": 1.451535115114866e-08,
3560
+ "loss": 0.2673,
3561
+ "step": 592
3562
+ },
3563
+ {
3564
+ "epoch": 0.99,
3565
+ "learning_rate": 1.175797503307874e-08,
3566
+ "loss": 0.1863,
3567
+ "step": 593
3568
+ },
3569
+ {
3570
+ "epoch": 0.99,
3571
+ "learning_rate": 9.290634070322491e-09,
3572
+ "loss": 0.2215,
3573
+ "step": 594
3574
+ },
3575
+ {
3576
+ "epoch": 0.99,
3577
+ "learning_rate": 7.113399908681429e-09,
3578
+ "loss": 0.2139,
3579
+ "step": 595
3580
+ },
3581
+ {
3582
+ "epoch": 0.99,
3583
+ "learning_rate": 5.226335769936697e-09,
3584
+ "loss": 0.1891,
3585
+ "step": 596
3586
+ },
3587
+ {
3588
+ "epoch": 0.99,
3589
+ "learning_rate": 3.6294964500116492e-09,
3590
+ "loss": 0.1882,
3591
+ "step": 597
3592
+ },
3593
+ {
3594
+ "epoch": 0.99,
3595
+ "learning_rate": 2.322928317378681e-09,
3596
+ "loss": 0.1911,
3597
+ "step": 598
3598
+ },
3599
+ {
3600
+ "epoch": 1.0,
3601
+ "learning_rate": 1.3066693117191886e-09,
3602
+ "loss": 0.225,
3603
+ "step": 599
3604
+ },
3605
+ {
3606
+ "epoch": 1.0,
3607
+ "learning_rate": 5.807489428111268e-10,
3608
+ "loss": 0.1494,
3609
+ "step": 600
3610
+ },
3611
+ {
3612
+ "epoch": 1.0,
3613
+ "learning_rate": 1.4518828968523857e-10,
3614
+ "loss": 0.1802,
3615
+ "step": 601
3616
+ },
3617
+ {
3618
+ "epoch": 1.0,
3619
+ "learning_rate": 0.0,
3620
+ "loss": 0.2316,
3621
+ "step": 602
3622
+ },
3623
+ {
3624
+ "epoch": 1.0,
3625
+ "step": 602,
3626
+ "total_flos": 58586457047040.0,
3627
+ "train_loss": 0.4762434925747868,
3628
+ "train_runtime": 4263.4552,
3629
+ "train_samples_per_second": 4.516,
3630
+ "train_steps_per_second": 0.141
3631
+ }
3632
+ ],
3633
+ "logging_steps": 1.0,
3634
+ "max_steps": 602,
3635
+ "num_input_tokens_seen": 0,
3636
+ "num_train_epochs": 1,
3637
+ "save_steps": 5000,
3638
+ "total_flos": 58586457047040.0,
3639
+ "train_batch_size": 16,
3640
+ "trial_name": null,
3641
+ "trial_params": null
3642
+ }