File size: 2,085 Bytes
478aa39
 
8deb556
478aa39
 
 
 
 
 
 
 
 
d0f5976
478aa39
 
 
d0f5976
478aa39
 
 
d0f5976
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
478aa39
 
 
d0f5976
478aa39
 
 
d0f5976
 
 
 
478aa39
 
 
 
d0f5976
738fbed
d0f5976
478aa39
 
 
8deb556
d0f5976
 
478aa39
 
 
d0f5976
 
478aa39
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: mit
base_model: microsoft/phi-2
tags:
- generated_from_trainer
model-index:
- name: phi-2-pl-v_0_1
  results: []
---

# phi-2-pl-v_0_1

This model is based on [microsoft/phi-2](https://huggingface.co/microsoft/phi-2). It was trained from scratch on the 20231201 Polish Wikipedia dump.

## Model description

The model was trained for a context length of 2048 tokens.

## Intended uses & limitations

The model is intended for research purposes only. It may generate fictitious, incorrect, unethical, or biased texts. At its current state, it is not suitable for production purposes.

Example:
```
tokenizer = AutoTokenizer.from_pretrained(
    model_name, trust_remote_code=True, use_fast=True
)
model = AutoModelForCausalLM.from_pretrained(
    model_name, vocab_size=len(tokenizer), attn_implementation="flash_attention_2",
    trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto"
)
model.eval()

generation_config = GenerationConfig.from_pretrained(
    model_name, do_sample=False, repetition_penalty=1.5,
    min_new_tokens=1, max_new_tokens=128
)

test_input = tokenizer("Wrocław to polski miasto. Wrocław jest ", return_tensors='pt').to(torch.device('cuda'))
test_output = model.generate(**test_input, generation_config=generation_config)
test_preds = tokenizer.batch_decode(sequences=test_output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
print(test_preds)
```

## Training and evaluation data

The 20231201 Polish Wikipedia dump.

## Training procedure

### Training environment

- GPU: 1 x A100X (80GB)

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- num_devices: 1
- train_batch_size: 8
- gradient_accumulation_steps: 1
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-07
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
- precision: bf16
- seed: 42

### Training results

- runtime: 1mo 3d 9h 40m 16s
- train_loss: 2.983

### Framework versions

- Transformers 4.37.1
- Pytorch 2.1.2
- Datasets 2.16.1
- Tokenizers 0.15.1