Automatic Speech Recognition
TensorBoard
Safetensors
Welsh
whisper
Generated from Trainer
verbatim
DewiBrynJones commited on
Commit
aeecc20
·
verified ·
1 Parent(s): 7b51bc9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -47
README.md CHANGED
@@ -3,66 +3,42 @@ license: apache-2.0
3
  base_model: openai/whisper-large-v3
4
  tags:
5
  - generated_from_trainer
 
6
  metrics:
7
  - wer
8
  model-index:
9
  - name: whisper-large-v3-ft-btb-cv-cy
10
  results: []
 
 
 
 
 
 
11
  ---
12
 
13
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
- should probably proofread and complete it, then remove this comment. -->
15
-
16
  # whisper-large-v3-ft-btb-cv-cy
17
 
18
- This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the DewiBrynJones/banc-trawsgrifiadau-bangor-clean train main, DewiBrynJones/commonvoice_18_0_cy train+dev+test main dataset.
19
- It achieves the following results on the evaluation set:
20
- - Loss: 0.3838
21
- - Wer: 0.2732
22
-
23
- ## Model description
24
-
25
- More information needed
26
-
27
- ## Intended uses & limitations
28
-
29
- More information needed
30
-
31
- ## Training and evaluation data
32
-
33
- More information needed
34
-
35
- ## Training procedure
36
 
37
- ### Training hyperparameters
 
38
 
39
- The following hyperparameters were used during training:
40
- - learning_rate: 1e-05
41
- - train_batch_size: 16
42
- - eval_batch_size: 16
43
- - seed: 42
44
- - gradient_accumulation_steps: 2
45
- - total_train_batch_size: 32
46
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
- - lr_scheduler_type: linear
48
- - lr_scheduler_warmup_steps: 500
49
- - training_steps: 5000
50
- - mixed_precision_training: Native AMP
51
 
52
- ### Training results
53
 
54
- | Training Loss | Epoch | Step | Validation Loss | Wer |
55
- |:-------------:|:------:|:----:|:---------------:|:------:|
56
- | 0.4047 | 0.5711 | 1000 | 0.4849 | 0.3505 |
57
- | 0.2476 | 1.1422 | 2000 | 0.4187 | 0.3137 |
58
- | 0.2527 | 1.7133 | 3000 | 0.3882 | 0.2901 |
59
- | 0.1568 | 2.2844 | 4000 | 0.3902 | 0.2816 |
60
- | 0.1313 | 2.8555 | 5000 | 0.3838 | 0.2732 |
61
 
 
 
62
 
63
- ### Framework versions
 
 
 
64
 
65
- - Transformers 4.44.0
66
- - Pytorch 2.4.0+cu121
67
- - Datasets 2.20.0
68
- - Tokenizers 0.19.1
 
3
  base_model: openai/whisper-large-v3
4
  tags:
5
  - generated_from_trainer
6
+ - verbatim
7
  metrics:
8
  - wer
9
  model-index:
10
  - name: whisper-large-v3-ft-btb-cv-cy
11
  results: []
12
+ datasets:
13
+ - techiaith/banc-trawsgrifiadau-bangor
14
+ - techiaith/commonvoice_18_0_cy
15
+ language:
16
+ - cy
17
+ pipeline_tag: automatic-speech-recognition
18
  ---
19
 
 
 
 
20
  # whisper-large-v3-ft-btb-cv-cy
21
 
22
+ This model is a version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) finedtuned with
23
+ transcriptions of Welsh language spontaneous speech [Banc Trawsgrifiadau Bangor (btb)](https://huggingface.co/datasets/techiaith/banc-trawsgrifiadau-bangor)
24
+ ac well as recordings of read speach from [Welsh Common Voice version 18 (cv)](https://huggingface.co/datasets/techiaith/commonvoice_18_0_cy)
25
+ for additional training.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
+ As such this model is suitable for more verbatim transcribing of spontaneous or unplanned speech.
28
+ It achieves the following results on the [Banc Trawsgrifiadau Bangor'r test set](https://huggingface.co/datasets/techiaith/banc-trawsgrifiadau-bangor/viewer/default/test)
29
 
30
+ - WER: 29.72
31
+ - CER: 11.01
 
 
 
 
 
 
 
 
 
 
32
 
 
33
 
34
+ ## Usage
 
 
 
 
 
 
35
 
36
+ ```python
37
+ from transformers import pipeline
38
 
39
+ transcriber = pipeline("automatic-speech-recognition", model="techiaith/whisper-large-v3-ft-btb-cv-cy")
40
+ result = transcriber(<path or url to soundfile>)
41
+ print (result)
42
+ ```
43
 
44
+ `{'text': 'ymm, yn y pum mlynadd dwitha 'ma ti 'di... Ie. ...bod drw dipyn felly do?'}`