File size: 3,202 Bytes
2f4df5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a82a06
 
 
 
2f4df5a
36f12a2
 
2f4df5a
36f12a2
 
 
 
 
 
 
 
 
 
2f4df5a
36f12a2
 
2f4df5a
36f12a2
2f4df5a
 
 
36f12a2
2f4df5a
 
 
 
 
 
 
36f12a2
2f4df5a
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    pipeline,
    LogitsProcessor,
    LogitsProcessorList
)
from typing import Any, List, Dict


class FixedVocabLogitsProcessor(LogitsProcessor):
    """
    A custom LogitsProcessor that restricts the vocabulary
    to a fixed set of token IDs, masking out everything else.
    """

    def __init__(self, allowed_ids: set[int], fill_value=float('-inf')):
        """
        Args:
          allowed_ids (set[int]): Token IDs allowed for generation.
          fill_value (float): Value used to mask disallowed tokens, default -inf.
        """
        self.allowed_ids = allowed_ids
        self.fill_value = fill_value

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        """
        Args:
          input_ids: shape (batch_size, sequence_length)
          scores: shape (batch_size, vocab_size) - pre-softmax logits for the next token
        Returns:
          scores: shape (batch_size, vocab_size) with masked logits
        """
        batch_size, vocab_size = scores.size()
        for b in range(batch_size):
            for token_id in range(vocab_size):
                if token_id not in self.allowed_ids:
                    scores[b, token_id] = self.fill_value
        return scores


class EndpointHandler:
    def __init__(self, path=""):
        # Load tokenizer and model
        self.tokenizer = AutoTokenizer.from_pretrained(path)
        self.model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", torch_dtype=torch.float16)

    def __call__(self, data: Any) -> List[Dict[str, str]]:
        # Extract inputs and parameters
        inputs = data.pop("inputs", data)
        parameters = data.pop("parameters", {})
        vocab_list = data.pop("vocab_list", None)

        if not vocab_list:
            raise ValueError("You must provide a 'vocab_list' to define allowed tokens.")

        # Define allowed tokens dynamically
        allowed_ids = set()
        for word in vocab_list:
            for tid in self.tokenizer.encode(word, add_special_tokens=False):
                allowed_ids.add(tid)
            for tid in self.tokenizer.encode(" " + word, add_special_tokens=False):
                allowed_ids.add(tid)

        # Create custom logits processor
        logits_processors = LogitsProcessorList([FixedVocabLogitsProcessor(allowed_ids=allowed_ids)])

        # Prepare input IDs
        input_ids = self.tokenizer(inputs, return_tensors="pt").input_ids.to(self.model.device)

        # Generate output
        output_ids = self.model.generate(
            input_ids=input_ids,
            logits_processor=logits_processors,
            max_length=parameters.get("max_length", 30),
            num_beams=parameters.get("num_beams", 1),
            do_sample=parameters.get("do_sample", False),
            pad_token_id=self.tokenizer.eos_token_id,
            no_repeat_ngram_size=parameters.get("no_repeat_ngram_size", 3)
        )

        # Decode the output
        generated_text = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)

        return [{"generated_text": generated_text}]