tau
/

Transformers
English
tau/sled
Inference Endpoints
maorivgi commited on
Commit
92db9b7
1 Parent(s): b8c8c2e

updated the readme

Browse files
Files changed (1) hide show
  1. README.md +29 -4
README.md CHANGED
@@ -21,7 +21,18 @@ T5 v1.1 includes several improvments on top of the original checkpoint. see its
21
  You can use the raw model for text infilling. However, the model is mostly meant to be fine-tuned on a supervised dataset.
22
 
23
  ### How to use
24
- To use the model, you first have to get a local copy of the SLED model from the [official repository](https://github.com/Mivg/SLED/blob/main/README.md).
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  Here is how to use this model in PyTorch:
27
 
@@ -34,12 +45,26 @@ outputs = model(**inputs)
34
  last_hidden_states = outputs.last_hidden_state
35
  ```
36
  You can also replace SledModel by SledModelForConditionalGeneration for Seq2Seq generation
 
 
 
37
 
38
  In case you wish to apply SLED on a task containing a prefix (e.g. question) which should be given as a context to
39
  every chunk, you can pass the `prefix_length` tensor input as well (A LongTensor in the length of the batch size).
40
-
41
- Sled is fully compatible with the AutoClasses (AutoTokenizer, AutoConfig, AutoModel
42
- and AutoModelForCausalLM) and can be loaded using the from_pretrained methods
 
 
 
 
 
 
 
 
 
 
 
43
 
44
  ### BibTeX entry and citation info
45
 
 
21
  You can use the raw model for text infilling. However, the model is mostly meant to be fine-tuned on a supervised dataset.
22
 
23
  ### How to use
24
+ To use the model, you first need to install `sled-py` in your environment (or clone the code from the [official repository](https://github.com/Mivg/SLED/blob/main/README.md))
25
+ ```
26
+ pip install sled-py
27
+ ```
28
+ For more installation instructions, see [here](https://github.com/Mivg/SLED#Installation).
29
+
30
+ Once installed, SLED is fully compatible with HuggingFace's AutoClasses (AutoTokenizer, AutoConfig, AutoModel
31
+ and AutoModelForCausalLM) and can be loaded using the from_pretrained methods
32
+ ```python
33
+ import sled # *** required so that SledModels will be registered for the AutoClasses ***
34
+ model = AutoModel.from_pretrained('tau/t5-v1_1-base-sled')
35
+ ```
36
 
37
  Here is how to use this model in PyTorch:
38
 
 
45
  last_hidden_states = outputs.last_hidden_state
46
  ```
47
  You can also replace SledModel by SledModelForConditionalGeneration for Seq2Seq generation
48
+ ```python
49
+ model = SledModelForConditionalGeneration.from_pretrained('tau/t5-v1_1-base-sled')
50
+ ```
51
 
52
  In case you wish to apply SLED on a task containing a prefix (e.g. question) which should be given as a context to
53
  every chunk, you can pass the `prefix_length` tensor input as well (A LongTensor in the length of the batch size).
54
+ ```python
55
+ import torch
56
+ import sled # *** required so that SledModels will be registered for the AutoClasses ***
57
+ tokenizer = AutoTokenizer.from_pretrained('tau/t5-v1_1-base-sled')
58
+ model = AutoModel.from_pretrained('tau/t5-v1_1-base-sled')
59
+ document_input_ids = tokenizer("Dogs are great for you.", return_tensors="pt").input_ids
60
+ prefix_input_ids = tokenizer("Are dogs good for you?", return_tensors="pt").input_ids
61
+ input_ids = torch.cat((prefix_input_ids, document_input_ids), dim=-1)
62
+ attention_mask = torch.ones_like(input_ids)
63
+ prefix_length = torch.LongTensor([[prefix_input_ids.size(1)]])
64
+
65
+ outputs = model(input_ids=input_ids, attention_mask=attention_mask, prefix_length=prefix_length)
66
+ last_hidden_states = outputs.last_hidden_state
67
+ ```
68
 
69
  ### BibTeX entry and citation info
70