Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language: en
|
4 |
+
tags:
|
5 |
+
- deberta-v3-base
|
6 |
+
- deberta-v3
|
7 |
+
- deberta
|
8 |
+
- text-classification
|
9 |
+
- nli
|
10 |
+
- natural-language-inference
|
11 |
+
- multitask
|
12 |
+
- multi-task
|
13 |
+
- pipeline
|
14 |
+
- extreme-multi-task
|
15 |
+
- extreme-mtl
|
16 |
+
- tasksource
|
17 |
+
- zero-shot
|
18 |
+
- rlhf
|
19 |
+
model-index:
|
20 |
+
- name: deberta-v3-base-tasksource-nli
|
21 |
+
results:
|
22 |
+
- task:
|
23 |
+
type: text-classification
|
24 |
+
name: Text Classification
|
25 |
+
dataset:
|
26 |
+
name: glue
|
27 |
+
type: glue
|
28 |
+
config: rte
|
29 |
+
split: validation
|
30 |
+
metrics:
|
31 |
+
- type: accuracy
|
32 |
+
value: 0.89
|
33 |
+
- task:
|
34 |
+
type: natural-language-inference
|
35 |
+
name: Natural Language Inference
|
36 |
+
dataset:
|
37 |
+
name: anli-r3
|
38 |
+
type: anli
|
39 |
+
config: plain_text
|
40 |
+
split: validation
|
41 |
+
metrics:
|
42 |
+
- type: accuracy
|
43 |
+
value: 0.52
|
44 |
+
name: Accuracy
|
45 |
+
datasets:
|
46 |
+
- glue
|
47 |
+
- super_glue
|
48 |
+
- anli
|
49 |
+
- tasksource/babi_nli
|
50 |
+
- sick
|
51 |
+
- snli
|
52 |
+
- scitail
|
53 |
+
- OpenAssistant/oasst1
|
54 |
+
- universal_dependencies
|
55 |
+
- hans
|
56 |
+
- qbao775/PARARULE-Plus
|
57 |
+
- alisawuffles/WANLI
|
58 |
+
- metaeval/recast
|
59 |
+
- sileod/probability_words_nli
|
60 |
+
- joey234/nan-nli
|
61 |
+
- pietrolesci/nli_fever
|
62 |
+
- pietrolesci/breaking_nli
|
63 |
+
- pietrolesci/conj_nli
|
64 |
+
- pietrolesci/fracas
|
65 |
+
- pietrolesci/dialogue_nli
|
66 |
+
- pietrolesci/mpe
|
67 |
+
- pietrolesci/dnc
|
68 |
+
- pietrolesci/gpt3_nli
|
69 |
+
- pietrolesci/recast_white
|
70 |
+
- pietrolesci/joci
|
71 |
+
- martn-nguyen/contrast_nli
|
72 |
+
- pietrolesci/robust_nli
|
73 |
+
- pietrolesci/robust_nli_is_sd
|
74 |
+
- pietrolesci/robust_nli_li_ts
|
75 |
+
- pietrolesci/gen_debiased_nli
|
76 |
+
- pietrolesci/add_one_rte
|
77 |
+
- metaeval/imppres
|
78 |
+
- pietrolesci/glue_diagnostics
|
79 |
+
- hlgd
|
80 |
+
- PolyAI/banking77
|
81 |
+
- paws
|
82 |
+
- quora
|
83 |
+
- medical_questions_pairs
|
84 |
+
- conll2003
|
85 |
+
- nlpaueb/finer-139
|
86 |
+
- Anthropic/hh-rlhf
|
87 |
+
- Anthropic/model-written-evals
|
88 |
+
- truthful_qa
|
89 |
+
- nightingal3/fig-qa
|
90 |
+
- tasksource/bigbench
|
91 |
+
- blimp
|
92 |
+
- cos_e
|
93 |
+
- cosmos_qa
|
94 |
+
- dream
|
95 |
+
- openbookqa
|
96 |
+
- qasc
|
97 |
+
- quartz
|
98 |
+
- quail
|
99 |
+
- head_qa
|
100 |
+
- sciq
|
101 |
+
- social_i_qa
|
102 |
+
- wiki_hop
|
103 |
+
- wiqa
|
104 |
+
- piqa
|
105 |
+
- hellaswag
|
106 |
+
- pkavumba/balanced-copa
|
107 |
+
- 12ml/e-CARE
|
108 |
+
- art
|
109 |
+
- tasksource/mmlu
|
110 |
+
- winogrande
|
111 |
+
- codah
|
112 |
+
- ai2_arc
|
113 |
+
- definite_pronoun_resolution
|
114 |
+
- swag
|
115 |
+
- math_qa
|
116 |
+
- metaeval/utilitarianism
|
117 |
+
- mteb/amazon_counterfactual
|
118 |
+
- SetFit/insincere-questions
|
119 |
+
- SetFit/toxic_conversations
|
120 |
+
- turingbench/TuringBench
|
121 |
+
- trec
|
122 |
+
- tals/vitaminc
|
123 |
+
- hope_edi
|
124 |
+
- strombergnlp/rumoureval_2019
|
125 |
+
- ethos
|
126 |
+
- tweet_eval
|
127 |
+
- discovery
|
128 |
+
- pragmeval
|
129 |
+
- silicone
|
130 |
+
- lex_glue
|
131 |
+
- papluca/language-identification
|
132 |
+
- imdb
|
133 |
+
- rotten_tomatoes
|
134 |
+
- ag_news
|
135 |
+
- yelp_review_full
|
136 |
+
- financial_phrasebank
|
137 |
+
- poem_sentiment
|
138 |
+
- dbpedia_14
|
139 |
+
- amazon_polarity
|
140 |
+
- app_reviews
|
141 |
+
- hate_speech18
|
142 |
+
- sms_spam
|
143 |
+
- humicroedit
|
144 |
+
- snips_built_in_intents
|
145 |
+
- banking77
|
146 |
+
- hate_speech_offensive
|
147 |
+
- yahoo_answers_topics
|
148 |
+
- pacovaldez/stackoverflow-questions
|
149 |
+
- zapsdcn/hyperpartisan_news
|
150 |
+
- zapsdcn/sciie
|
151 |
+
- zapsdcn/citation_intent
|
152 |
+
- go_emotions
|
153 |
+
- allenai/scicite
|
154 |
+
- liar
|
155 |
+
- relbert/lexical_relation_classification
|
156 |
+
- metaeval/linguisticprobing
|
157 |
+
- tasksource/crowdflower
|
158 |
+
- metaeval/ethics
|
159 |
+
- emo
|
160 |
+
- google_wellformed_query
|
161 |
+
- tweets_hate_speech_detection
|
162 |
+
- has_part
|
163 |
+
- wnut_17
|
164 |
+
- ncbi_disease
|
165 |
+
- acronym_identification
|
166 |
+
- jnlpba
|
167 |
+
- species_800
|
168 |
+
- SpeedOfMagic/ontonotes_english
|
169 |
+
- blog_authorship_corpus
|
170 |
+
- launch/open_question_type
|
171 |
+
- health_fact
|
172 |
+
- commonsense_qa
|
173 |
+
- mc_taco
|
174 |
+
- ade_corpus_v2
|
175 |
+
- prajjwal1/discosense
|
176 |
+
- circa
|
177 |
+
- PiC/phrase_similarity
|
178 |
+
- copenlu/scientific-exaggeration-detection
|
179 |
+
- quarel
|
180 |
+
- mwong/fever-evidence-related
|
181 |
+
- numer_sense
|
182 |
+
- dynabench/dynasent
|
183 |
+
- raquiba/Sarcasm_News_Headline
|
184 |
+
- sem_eval_2010_task_8
|
185 |
+
- demo-org/auditor_review
|
186 |
+
- medmcqa
|
187 |
+
- aqua_rat
|
188 |
+
- RuyuanWan/Dynasent_Disagreement
|
189 |
+
- RuyuanWan/Politeness_Disagreement
|
190 |
+
- RuyuanWan/SBIC_Disagreement
|
191 |
+
- RuyuanWan/SChem_Disagreement
|
192 |
+
- RuyuanWan/Dilemmas_Disagreement
|
193 |
+
- lucasmccabe/logiqa
|
194 |
+
- wiki_qa
|
195 |
+
- metaeval/cycic_classification
|
196 |
+
- metaeval/cycic_multiplechoice
|
197 |
+
- metaeval/sts-companion
|
198 |
+
- metaeval/commonsense_qa_2.0
|
199 |
+
- metaeval/lingnli
|
200 |
+
- metaeval/monotonicity-entailment
|
201 |
+
- metaeval/arct
|
202 |
+
- metaeval/scinli
|
203 |
+
- metaeval/naturallogic
|
204 |
+
- onestop_qa
|
205 |
+
- demelin/moral_stories
|
206 |
+
- corypaik/prost
|
207 |
+
- aps/dynahate
|
208 |
+
- metaeval/syntactic-augmentation-nli
|
209 |
+
- metaeval/autotnli
|
210 |
+
- lasha-nlp/CONDAQA
|
211 |
+
- openai/webgpt_comparisons
|
212 |
+
- Dahoas/synthetic-instruct-gptj-pairwise
|
213 |
+
- metaeval/scruples
|
214 |
+
- metaeval/wouldyourather
|
215 |
+
- sileod/attempto-nli
|
216 |
+
- metaeval/defeasible-nli
|
217 |
+
- metaeval/help-nli
|
218 |
+
- metaeval/nli-veridicality-transitivity
|
219 |
+
- metaeval/natural-language-satisfiability
|
220 |
+
- metaeval/lonli
|
221 |
+
- tasksource/dadc-limit-nli
|
222 |
+
- ColumbiaNLP/FLUTE
|
223 |
+
- metaeval/strategy-qa
|
224 |
+
- openai/summarize_from_feedback
|
225 |
+
- tasksource/folio
|
226 |
+
- metaeval/tomi-nli
|
227 |
+
- metaeval/avicenna
|
228 |
+
- stanfordnlp/SHP
|
229 |
+
- GBaker/MedQA-USMLE-4-options-hf
|
230 |
+
- GBaker/MedQA-USMLE-4-options
|
231 |
+
- sileod/wikimedqa
|
232 |
+
- declare-lab/cicero
|
233 |
+
- amydeng2000/CREAK
|
234 |
+
- metaeval/mutual
|
235 |
+
- inverse-scaling/NeQA
|
236 |
+
- inverse-scaling/quote-repetition
|
237 |
+
- inverse-scaling/redefine-math
|
238 |
+
- tasksource/puzzte
|
239 |
+
- metaeval/implicatures
|
240 |
+
- race
|
241 |
+
- metaeval/spartqa-yn
|
242 |
+
- metaeval/spartqa-mchoice
|
243 |
+
- metaeval/temporal-nli
|
244 |
+
- metaeval/ScienceQA_text_only
|
245 |
+
- AndyChiang/cloth
|
246 |
+
- metaeval/logiqa-2.0-nli
|
247 |
+
- tasksource/oasst1_dense_flat
|
248 |
+
- metaeval/boolq-natural-perturbations
|
249 |
+
- metaeval/path-naturalness-prediction
|
250 |
+
- riddle_sense
|
251 |
+
- Jiangjie/ekar_english
|
252 |
+
- metaeval/implicit-hate-stg1
|
253 |
+
- metaeval/chaos-mnli-ambiguity
|
254 |
+
- IlyaGusev/headline_cause
|
255 |
+
- metaeval/race-c
|
256 |
+
- metaeval/equate
|
257 |
+
- metaeval/ambient
|
258 |
+
- AndyChiang/dgen
|
259 |
+
- metaeval/clcd-english
|
260 |
+
- civil_comments
|
261 |
+
- metaeval/acceptability-prediction
|
262 |
+
- maximedb/twentyquestions
|
263 |
+
- metaeval/counterfactually-augmented-snli
|
264 |
+
- tasksource/I2D2
|
265 |
+
- sileod/mindgames
|
266 |
+
- metaeval/counterfactually-augmented-imdb
|
267 |
+
- metaeval/cnli
|
268 |
+
- metaeval/reclor
|
269 |
+
- tasksource/oasst1_pairwise_rlhf_reward
|
270 |
+
- tasksource/zero-shot-label-nli
|
271 |
+
- webis/args_me
|
272 |
+
- webis/Touche23-ValueEval
|
273 |
+
- tasksource/starcon
|
274 |
+
- tasksource/ruletaker
|
275 |
+
- lighteval/lsat_qa
|
276 |
+
- tasksource/ConTRoL-nli
|
277 |
+
- tasksource/tracie
|
278 |
+
- tasksource/sherliic
|
279 |
+
- tasksource/sen-making
|
280 |
+
- tasksource/winowhy
|
281 |
+
- mediabiasgroup/mbib-base
|
282 |
+
- tasksource/robustLR
|
283 |
+
- CLUTRR/v1
|
284 |
+
- tasksource/logical-fallacy
|
285 |
+
- tasksource/parade
|
286 |
+
- tasksource/cladder
|
287 |
+
- tasksource/subjectivity
|
288 |
+
- tasksource/MOH
|
289 |
+
- tasksource/VUAC
|
290 |
+
- tasksource/TroFi
|
291 |
+
- sharc_modified
|
292 |
+
- tasksource/conceptrules_v2
|
293 |
+
- tasksource/disrpt
|
294 |
+
- conll2000
|
295 |
+
- DFKI-SLT/few-nerd
|
296 |
+
- tasksource/com2sense
|
297 |
+
- tasksource/scone
|
298 |
+
- tasksource/winodict
|
299 |
+
- tasksource/fool-me-twice
|
300 |
+
- tasksource/monli
|
301 |
+
- tasksource/corr2cause
|
302 |
+
- tasksource/apt
|
303 |
+
- zeroshot/twitter-financial-news-sentiment
|
304 |
+
- tasksource/icl-symbol-tuning-instruct
|
305 |
+
- tasksource/SpaceNLI
|
306 |
+
- sihaochen/propsegment
|
307 |
+
- HannahRoseKirk/HatemojiBuild
|
308 |
+
- tasksource/regset
|
309 |
+
- tasksource/babi_nli
|
310 |
+
- lmsys/chatbot_arena_conversations
|
311 |
+
metrics:
|
312 |
+
- accuracy
|
313 |
+
library_name: transformers
|
314 |
+
pipeline_tag: zero-shot-classification
|
315 |
+
---
|
316 |
+
|
317 |
+
# Model Card for DeBERTa-v3-small-tasksource-nli
|
318 |
+
|
319 |
+
This is [DeBERTa-v3-base](https://hf.co/microsoft/deberta-v3-small) fine-tuned with multi-task learning on 600+ tasks of the [tasksource collection](https://github.com/sileod/tasksource/).
|
320 |
+
This checkpoint has strong zero-shot validation performance on many tasks, and can be used for:
|
321 |
+
- Zero-shot entailment-based classification for arbitrary labels [ZS].
|
322 |
+
- Natural language inference [NLI]
|
323 |
+
- Hundreds of previous tasks with tasksource-adapters [TA].
|
324 |
+
- Further fine-tuning on a new task or tasksource task (classification, token classification or multiple-choice) [FT].
|
325 |
+
|
326 |
+
# [ZS] Zero-shot classification pipeline
|
327 |
+
```python
|
328 |
+
from transformers import pipeline
|
329 |
+
classifier = pipeline("zero-shot-classification",model="sileod/deberta-v3-small-tasksource-nli")
|
330 |
+
|
331 |
+
text = "one day I will see the world"
|
332 |
+
candidate_labels = ['travel', 'cooking', 'dancing']
|
333 |
+
classifier(text, candidate_labels)
|
334 |
+
```
|
335 |
+
NLI training data of this model includes [label-nli](https://huggingface.co/datasets/tasksource/zero-shot-label-nli), a NLI dataset specially constructed to improve this kind of zero-shot classification.
|
336 |
+
|
337 |
+
# [NLI] Natural language inference pipeline
|
338 |
+
|
339 |
+
```python
|
340 |
+
from transformers import pipeline
|
341 |
+
pipe = pipeline("text-classification",model="sileod/deberta-v3-small-tasksource-nli")
|
342 |
+
pipe([dict(text='there is a cat',
|
343 |
+
text_pair='there is a black cat')]) #list of (premise,hypothesis)
|
344 |
+
# [{'label': 'neutral', 'score': 0.9952911138534546}]
|
345 |
+
```
|
346 |
+
|
347 |
+
# [TA] Tasksource-adapters: 1 line access to hundreds of tasks
|
348 |
+
|
349 |
+
```python
|
350 |
+
# !pip install tasknet
|
351 |
+
import tasknet as tn
|
352 |
+
pipe = tn.load_pipeline('sileod/deberta-v3-small-tasksource-nli','glue/sst2') # works for 500+ tasksource tasks
|
353 |
+
pipe(['That movie was great !', 'Awful movie.'])
|
354 |
+
# [{'label': 'positive', 'score': 0.9956}, {'label': 'negative', 'score': 0.9967}]
|
355 |
+
```
|
356 |
+
The list of tasks is available in model config.json.
|
357 |
+
This is more efficient than ZS since it requires only one forward pass per example, but it is less flexible.
|
358 |
+
|
359 |
+
|
360 |
+
# [FT] Tasknet: 3 lines fine-tuning
|
361 |
+
|
362 |
+
```python
|
363 |
+
# !pip install tasknet
|
364 |
+
import tasknet as tn
|
365 |
+
hparams=dict(model_name='sileod/deberta-v3-small-tasksource-nli', learning_rate=2e-5)
|
366 |
+
model, trainer = tn.Model_Trainer([tn.AutoTask("glue/rte")], hparams)
|
367 |
+
trainer.train()
|
368 |
+
```
|
369 |
+
|
370 |
+
## Evaluation
|
371 |
+
This model ranked 1st among all models with the microsoft/deberta-v3-base architecture according to the IBM model recycling evaluation.
|
372 |
+
https://ibm.github.io/model-recycling/
|
373 |
+
|
374 |
+
### Software and training details
|
375 |
+
|
376 |
+
The model was trained on 600 tasks for 200k steps with a batch size of 384 and a peak learning rate of 2e-5. Training took 12 days on Nvidia A30 24GB gpu.
|
377 |
+
This is the shared model with the MNLI classifier on top. Each task had a specific CLS embedding, which is dropped 10% of the time to facilitate model use without it. All multiple-choice model used the same classification layers. For classification tasks, models shared weights if their labels matched.
|
378 |
+
|
379 |
+
|
380 |
+
https://github.com/sileod/tasksource/ \
|
381 |
+
https://github.com/sileod/tasknet/ \
|
382 |
+
Training code: https://colab.research.google.com/drive/1iB4Oxl9_B5W3ZDzXoWJN-olUbqLBxgQS?usp=sharing
|
383 |
+
|
384 |
+
# Citation
|
385 |
+
|
386 |
+
More details on this [article:](https://arxiv.org/abs/2301.05948)
|
387 |
+
```
|
388 |
+
@article{sileo2023tasksource,
|
389 |
+
title={tasksource: Structured Dataset Preprocessing Annotations for Frictionless Extreme Multi-Task Learning and Evaluation},
|
390 |
+
author={Sileo, Damien},
|
391 |
+
url= {https://arxiv.org/abs/2301.05948},
|
392 |
+
journal={arXiv preprint arXiv:2301.05948},
|
393 |
+
year={2023}
|
394 |
+
}
|
395 |
+
```
|
396 |
+
|
397 |
+
|
398 |
+
# Model Card Contact
|
399 |
+
|
400 | |
401 |
+
|
402 |
+
|
403 |
+
</details>
|