File size: 1,896 Bytes
b87ec76
 
 
 
 
 
 
951c2e1
b87ec76
951c2e1
 
 
b87ec76
 
 
 
 
a4175cb
b87ec76
951c2e1
b87ec76
951c2e1
b87ec76
951c2e1
b87ec76
 
 
 
 
 
 
 
 
 
 
 
 
 
6b2a443
b87ec76
 
 
 
 
 
6b2a443
 
 
 
b87ec76
 
 
 
 
 
 
951c2e1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-large-et-children
  results: []
language:
- et
library_name: transformers
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-large-v2-et-children

This model is a fine-tuned version of [agnesluhtaru/whisper-large-et-ERR2020-v2](https://huggingface.co/agnesluhtaru/whisper-large-et-ERR2020-v2) on an Estonian children's speech dataset.

More information about the model's performance and the data used for evaluation and training:

Luhtaru, Agnes; Jaaska, Rauno; Kruusamäe, Karl; Fishel, Mark (2023). Automatic Transcription for Estonian Children’s Speech. In: Proceedings of the 24th Nordic Conference on Computational Linguistics. [https://openreview.net/forum?id=xbPTfBIUby](https://openreview.net/forum?id=xbPTfBIUby)


### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 2000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0302        | 4.03  | 500  | 0.2971          | 16.2892 |
| 0.0042        | 8.06  | 1000 | 0.3406          | 15.8551 |
| 0.0017        | 12.1  | 1500 | 0.3714          | 15.5585 |
| 0.0009        | 16.13 | 2000 | 0.3934          | 15.6445 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.12.1+rocm5.1.1
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2