taroshi commited on
Commit
0b1919a
·
verified ·
1 Parent(s): 8b3313b

Upload configuration_internvl_chat.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. configuration_internvl_chat.py +95 -0
configuration_internvl_chat.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from transformers import AutoConfig, LlamaConfig, Qwen2Config
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ from .configuration_intern_vit import InternVisionConfig
14
+
15
+ logger = logging.get_logger(__name__)
16
+
17
+
18
+ class InternVLChatConfig(PretrainedConfig):
19
+ model_type = 'internvl_chat'
20
+ is_composition = True
21
+
22
+ def __init__(
23
+ self,
24
+ vision_config=None,
25
+ llm_config=None,
26
+ use_backbone_lora=0,
27
+ use_llm_lora=0,
28
+ select_layer=-1,
29
+ force_image_size=None,
30
+ downsample_ratio=0.5,
31
+ template=None,
32
+ dynamic_image_size=False,
33
+ use_thumbnail=False,
34
+ ps_version='v1',
35
+ min_dynamic_patch=1,
36
+ max_dynamic_patch=6,
37
+ **kwargs):
38
+ super().__init__(**kwargs)
39
+
40
+ if vision_config is None:
41
+ vision_config = {'architectures': ['InternVisionModel']}
42
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
43
+
44
+ if llm_config is None:
45
+ llm_config = {'architectures': ['Qwen2ForCausalLM']}
46
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
47
+
48
+ self.vision_config = InternVisionConfig(**vision_config)
49
+ if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
50
+ self.llm_config = LlamaConfig(**llm_config)
51
+ elif llm_config.get('architectures')[0] == 'Qwen2ForCausalLM':
52
+ self.llm_config = Qwen2Config(**llm_config)
53
+ else:
54
+ raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
55
+ self.use_backbone_lora = use_backbone_lora
56
+ self.use_llm_lora = use_llm_lora
57
+ self.select_layer = select_layer
58
+ self.force_image_size = force_image_size
59
+ self.downsample_ratio = downsample_ratio
60
+ self.template = template
61
+ self.dynamic_image_size = dynamic_image_size
62
+ self.use_thumbnail = use_thumbnail
63
+ self.ps_version = ps_version # pixel shuffle version
64
+ self.min_dynamic_patch = min_dynamic_patch
65
+ self.max_dynamic_patch = max_dynamic_patch
66
+
67
+ logger.info(f'vision_select_layer: {self.select_layer}')
68
+ logger.info(f'ps_version: {self.ps_version}')
69
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
70
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
71
+
72
+ def to_dict(self):
73
+ """
74
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
75
+
76
+ Returns:
77
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
78
+ """
79
+ output = copy.deepcopy(self.__dict__)
80
+ output['vision_config'] = self.vision_config.to_dict()
81
+ output['llm_config'] = self.llm_config.to_dict()
82
+ output['model_type'] = self.__class__.model_type
83
+ output['use_backbone_lora'] = self.use_backbone_lora
84
+ output['use_llm_lora'] = self.use_llm_lora
85
+ output['select_layer'] = self.select_layer
86
+ output['force_image_size'] = self.force_image_size
87
+ output['downsample_ratio'] = self.downsample_ratio
88
+ output['template'] = self.template
89
+ output['dynamic_image_size'] = self.dynamic_image_size
90
+ output['use_thumbnail'] = self.use_thumbnail
91
+ output['ps_version'] = self.ps_version
92
+ output['min_dynamic_patch'] = self.min_dynamic_patch
93
+ output['max_dynamic_patch'] = self.max_dynamic_patch
94
+
95
+ return output