File size: 1,506 Bytes
4f35fe7
 
7b381dd
 
84e8fae
c9fae86
b28cb91
ab8a02a
dcbbab8
b28cb91
fcc513f
 
 
 
 
 
 
 
 
 
 
 
 
 
7b381dd
cc7fc08
 
357f677
4f35fe7
bd02b18
 
 
 
 
 
 
9da9a5d
dc422aa
 
 
 
 
 
 
 
 
9da9a5d
 
 
 
 
 
 
 
 
 
 
 
bd02b18
 
fb8539c
bd02b18
 
 
 
 
fb8539c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
widget:
- text: These are nice flowers
- text: What the hell
- text: You really suck, dude
- text: How to put screw thread in furniture? 
- text: The vacuum cleaner began to suck up the dust from the carpet, making the room much cleaner.
metrics:
- name: Accuracy
  type: accuracy
  value: 0.9748
- name: Precision
  type: precision
  value: 0.9331
- name: Recall
  type: recall
  value: 0.9416
- name: F1 Score
  type: f1
  value: 0.9373 
- name: AUC-ROC
  type: roc_auc
  value: 0.9955
base_model: distilbert/distilbert-base-uncased
datasets: 
- tarekziade/profanity
library_name: "transformers"
---

Fine-tuned model that detects profanity in text.

Inspired from https://victorzhou.com/blog/better-profanity-detection-with-scikit-learn/

The model was trained with the dataset from that project.

Usage example with Python:

```
from transformers import pipeline

classifier = pipeline("sentiment-analysis", model="tarekziade/pardonmyai")

print(classifier("These are beautiful flowers"))
```


Usage example with Transformers.js:

```
import { pipeline } from '@xenova/transformers';

let pipe = await pipeline('sentiment-analysis', model='tarekziade/pardonmyai');

let out = await pipe('These are beautiful flowers');
```


Source code and data: https://github.com/tarekziade/pardonmyai

metrics:

- Accuracy: 0.9748
- Precision: 0.9331
- Recall: 0.9416
- F1 Score: 0.9373
- AUC-ROC: 0.9955

There's a tiny version available: https://huggingface.co/tarekziade/pardonmyai-tiny