tanmaylaud commited on
Commit
0a1bc74
·
1 Parent(s): d7aa717

updated model weights

Browse files
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: mr
3
+ datasets:
4
+ - openslr
5
+ - interspeech_2021_asr
6
+ metrics:
7
+ - wer
8
+ tags:
9
+ - audio
10
+ - automatic-speech-recognition
11
+ - speech
12
+ - xlsr-fine-tuning-week
13
+ - hindi
14
+ - marathi
15
+ license: apache-2.0
16
+ model-index:
17
+ - name: XLSR Wav2Vec2 Large 53 Hindi-Marathi by Tanmay Laud
18
+ results:
19
+ - task:
20
+ name: Speech Recognition
21
+ type: automatic-speech-recognition
22
+ dataset:
23
+ name: OpenSLR hi, OpenSLR mr
24
+ type: openslr, interspeech_2021_asr
25
+ metrics:
26
+ - name: Test WER
27
+ type: wer
28
+ value: 24.92
29
+ ---
30
+
31
+ # Wav2Vec2-Large-XLSR-53-Hindi-Marathi
32
+ Fine-tuned facebook/wav2vec2-large-xlsr-53 on Hindi and Marathi using the OpenSLR SLR64 datasets. When using this model, make sure that your speech input is sampled at 16kHz.
33
+
34
+ ## Usage
35
+ The model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi text and audio_path fields:
36
+
37
+ ```
38
+ import torch
39
+ import torchaudio
40
+ import librosa
41
+ from datasets import load_dataset
42
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
43
+
44
+ # test_data = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section.
45
+
46
+ processor = Wav2Vec2Processor.from_pretrained("tanmaylaud/wav2vec2-large-xlsr-hindi-marathi")
47
+ model = Wav2Vec2ForCTC.from_pretrained("tanmaylaud/wav2vec2-large-xlsr-hindi-marathi")
48
+
49
+ # Preprocessing the datasets.
50
+ # We need to read the audio files as arrays
51
+ def speech_file_to_array_fn(batch):
52
+ speech_array, sampling_rate = torchaudio.load(batch["audio_path"])
53
+ batch["speech"] = librosa.resample(speech_array[0].numpy(), sampling_rate, 16_000) # sampling_rate can vary
54
+ return batch
55
+
56
+ test_data= test_data.map(speech_file_to_array_fn)
57
+ inputs = processor(test_data["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
58
+
59
+ with torch.no_grad():
60
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
61
+
62
+ predicted_ids = torch.argmax(logits, dim=-1)
63
+
64
+ print("Prediction:", processor.batch_decode(predicted_ids))
65
+ print("Reference:", test_data["text"][:2])
66
+ Evaluation
67
+ The model can be evaluated as follows on 10% of the Marathi data on OpenSLR.
68
+ ```
69
+ ```
70
+ import torchaudio
71
+ from datasets import load_metric
72
+ from transformers import Wav2Vec2Processor,Wav2Vec2ForCTC
73
+ import torch
74
+ import librosa
75
+ import numpy as np
76
+ import re
77
+
78
+ wer = load_metric("wer")
79
+ processor = Wav2Vec2Processor.from_pretrained("tanmaylaud/wav2vec2-large-xlsr-hindi-marathi")
80
+ model = Wav2Vec2ForCTC.from_pretrained("tanmaylaud/wav2vec2-large-xlsr-hindi-marathi")
81
+
82
+ model.to("cuda")
83
+
84
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\।]'
85
+
86
+ # Preprocessing the datasets.
87
+ # We need to read the audio files as arrays
88
+ def speech_file_to_array_fn(batch):
89
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"])
90
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
91
+ batch["speech"] = speech_array[0].numpy()
92
+ batch["sampling_rate"] = sampling_rate
93
+ batch["target_text"] = batch["sentence"]
94
+ batch["speech"] = librosa.resample(np.asarray(batch["speech"]), sampling_rate, 16_000)
95
+ batch["sampling_rate"] = 16_000
96
+ return batch
97
+
98
+ test= test.map(speech_file_to_array_fn)
99
+
100
+ # Preprocessing the datasets.
101
+ # We need to read the audio files as arrays
102
+ def evaluate(batch):
103
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
104
+ with torch.no_grad():
105
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
106
+ pred_ids = torch.argmax(logits, dim=-1)
107
+ batch["pred_strings"] = processor.batch_decode(pred_ids, group_tokens=False)
108
+ # we do not want to group tokens when computing the metrics
109
+ return batch
110
+
111
+ result = test.map(evaluate, batched=True, batch_size=32)
112
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["text"])))
113
+ ```
114
+
115
+ Link to eval notebook : https://colab.research.google.com/drive/1nZRTgKfxCD9cvy90wikTHkg2il3zgcqW#scrollTo=cXWFbhb0d7DT
.ipynb_checkpoints/vocab-checkpoint.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ँ": 1, "ं": 2, "ः": 3, "अ": 4, "आ": 5, "इ": 6, "ई": 7, "उ": 8, "ऊ": 9, "ऋ": 10, "ऍ": 11, "ए": 12, "ऐ": 13, "ऑ": 14, "ओ": 15, "औ": 16, "क": 17, "ख": 18, "ग": 19, "घ": 20, "च": 21, "छ": 22, "ज": 23, "झ": 24, "ञ": 25, "ट": 26, "ठ": 27, "ड": 28, "ढ": 29, "ण": 30, "त": 31, "थ": 32, "द": 33, "ध": 34, "न": 35, "प": 36, "फ": 37, "ब": 38, "भ": 39, "म": 40, "य": 41, "र": 42, "ल": 43, "ळ": 44, "व": 45, "श": 46, "ष": 47, "स": 48, "ह": 49, "़": 50, "ा": 51, "ि": 52, "ी": 53, "ु": 54, "ू": 55, "ृ": 56, "ॅ": 57, "े": 58, "ै": 59, "ॉ": 60, "ो": 61, "ौ": 62, "्": 63, "क़": 64, "ख़": 65, "ग़": 66, "ज़": 67, "ड़": 68, "ढ़": 69, "फ़": 70, "ॠ": 71, "|": 0, "[UNK]": 72, "[PAD]": 73}
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "facebook/wav2vec2-large-xlsr-53",
3
  "activation_dropout": 0.1,
4
  "apply_spec_augment": true,
5
  "architectures": [
 
1
  {
2
+ "_name_or_path": "/workspace/output_models/hi-mr/wav2vec2-large-xlsr-hindi-marathi-3/pretrained/checkpoint-6200",
3
  "activation_dropout": 0.1,
4
  "apply_spec_augment": true,
5
  "architectures": [
optimizer.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0b538512208981b86bad40c84dca35d6debe0480643b51f75675349c77e210c3
3
  size 2490683911
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b23ed37c63cbd526a091960074331c9fbfd62f9d565429c9b93a7c0eb52f53cf
3
  size 2490683911
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1d2ba642a7c83d88a9b82b15757e40514fecf6e95a473f3915b831030070f15d
3
- size 1262237207
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93144d21b0411a36226c50063dbe960dcf87724fd5d564a255d8440ca7775038
3
+ size 1262237208
scheduler.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f676aeb2802a2b9a559dffe2909c5347f7a37bf0aa25486203d2b34b9322c69a
3
  size 623
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbe28cde8077f5499e53dba7300dfa7447b2a12524fef45b273ea4b6f7b628dc
3
  size 623
trainer_state.json CHANGED
@@ -1,1016 +1,296 @@
1
  {
2
- "best_metric": 0.24944954621126686,
3
- "best_model_checkpoint": "/workspace/output_models/hi-mr/wav2vec2-large-xlsr-hindi-marathi-3/checkpoint-10000",
4
- "epoch": 16.0,
5
- "global_step": 10000,
6
  "is_hyper_param_search": false,
7
  "is_local_process_zero": true,
8
  "is_world_process_zero": true,
9
  "log_history": [
10
  {
11
  "epoch": 0.16,
12
- "learning_rate": 6.666666666666666e-05,
13
- "loss": 16.623,
14
  "step": 100
15
  },
16
  {
17
  "epoch": 0.32,
18
- "learning_rate": 0.0001333333333333333,
19
- "loss": 3.8395,
20
  "step": 200
21
  },
22
  {
23
  "epoch": 0.32,
24
- "eval_loss": 3.426492214202881,
25
- "eval_runtime": 80.6897,
26
- "eval_samples_per_second": 24.786,
27
- "eval_wer": 1.0,
28
  "step": 200
29
  },
30
  {
31
  "epoch": 0.48,
32
- "learning_rate": 0.00019999999999999998,
33
- "loss": 3.4548,
34
  "step": 300
35
  },
36
  {
37
- "epoch": 0.64,
38
- "learning_rate": 0.0002666666666666666,
39
- "loss": 3.3471,
40
  "step": 400
41
  },
42
  {
43
- "epoch": 0.64,
44
- "eval_loss": 2.9866673946380615,
45
- "eval_runtime": 81.4064,
46
- "eval_samples_per_second": 24.568,
47
- "eval_wer": 1.0,
48
  "step": 400
49
  },
50
  {
51
- "epoch": 0.8,
52
- "learning_rate": 0.0002991803278688524,
53
- "loss": 1.9911,
54
  "step": 500
55
  },
56
  {
57
- "epoch": 0.96,
58
- "learning_rate": 0.00029754098360655737,
59
- "loss": 0.9874,
60
  "step": 600
61
  },
62
  {
63
- "epoch": 0.96,
64
- "eval_loss": 0.6858933568000793,
65
- "eval_runtime": 82.4721,
66
- "eval_samples_per_second": 24.251,
67
- "eval_wer": 0.5436335320337253,
68
  "step": 600
69
  },
70
  {
71
- "epoch": 1.12,
72
- "learning_rate": 0.00029590163934426226,
73
- "loss": 0.7698,
74
  "step": 700
75
  },
76
  {
77
- "epoch": 1.28,
78
- "learning_rate": 0.00029426229508196716,
79
- "loss": 0.6471,
80
  "step": 800
81
  },
82
  {
83
- "epoch": 1.28,
84
- "eval_loss": 0.5174924731254578,
85
- "eval_runtime": 82.661,
86
- "eval_samples_per_second": 24.195,
87
- "eval_wer": 0.43928897481338275,
88
  "step": 800
89
  },
90
  {
91
- "epoch": 1.44,
92
- "learning_rate": 0.0002926229508196721,
93
- "loss": 0.568,
94
  "step": 900
95
  },
96
  {
97
- "epoch": 1.6,
98
- "learning_rate": 0.000290983606557377,
99
- "loss": 0.5393,
100
  "step": 1000
101
  },
102
  {
103
- "epoch": 1.6,
104
- "eval_loss": 0.4453641474246979,
105
- "eval_runtime": 83.0998,
106
- "eval_samples_per_second": 24.067,
107
- "eval_wer": 0.39015090489232584,
108
  "step": 1000
109
  },
110
  {
111
- "epoch": 1.76,
112
- "learning_rate": 0.00028934426229508195,
113
- "loss": 0.5009,
114
  "step": 1100
115
  },
116
  {
117
- "epoch": 1.92,
118
- "learning_rate": 0.00028770491803278684,
119
- "loss": 0.4932,
120
  "step": 1200
121
  },
122
  {
123
- "epoch": 1.92,
124
- "eval_loss": 0.41159647703170776,
125
- "eval_runtime": 83.9345,
126
- "eval_samples_per_second": 23.828,
127
- "eval_wer": 0.37189194994898234,
128
  "step": 1200
129
  },
130
  {
131
- "epoch": 2.08,
132
- "learning_rate": 0.00028606557377049174,
133
- "loss": 0.4407,
134
  "step": 1300
135
  },
136
  {
137
- "epoch": 2.24,
138
- "learning_rate": 0.00028442622950819674,
139
- "loss": 0.3891,
140
  "step": 1400
141
  },
142
  {
143
- "epoch": 2.24,
144
- "eval_loss": 0.4060937166213989,
145
- "eval_runtime": 82.5906,
146
- "eval_samples_per_second": 24.216,
147
- "eval_wer": 0.3500886096342839,
148
  "step": 1400
149
  },
150
  {
151
- "epoch": 2.4,
152
- "learning_rate": 0.00028278688524590163,
153
- "loss": 0.393,
154
  "step": 1500
155
  },
156
  {
157
- "epoch": 2.56,
158
- "learning_rate": 0.00028114754098360653,
159
- "loss": 0.3723,
160
  "step": 1600
161
  },
162
  {
163
- "epoch": 2.56,
164
- "eval_loss": 0.37875330448150635,
165
- "eval_runtime": 83.1067,
166
- "eval_samples_per_second": 24.065,
167
- "eval_wer": 0.3370388271306589,
168
  "step": 1600
169
  },
170
  {
171
- "epoch": 2.72,
172
- "learning_rate": 0.0002795081967213115,
173
- "loss": 0.3732,
174
  "step": 1700
175
  },
176
  {
177
- "epoch": 2.88,
178
- "learning_rate": 0.00027786885245901637,
179
- "loss": 0.3536,
180
  "step": 1800
181
  },
182
  {
183
- "epoch": 2.88,
184
- "eval_loss": 0.3747707009315491,
185
- "eval_runtime": 83.4226,
186
- "eval_samples_per_second": 23.974,
187
- "eval_wer": 0.3268889962945062,
188
  "step": 1800
189
  },
190
  {
191
- "epoch": 3.04,
192
- "learning_rate": 0.0002762295081967213,
193
- "loss": 0.3394,
194
  "step": 1900
195
  },
196
  {
197
- "epoch": 3.2,
198
- "learning_rate": 0.0002745901639344262,
199
- "loss": 0.2952,
200
  "step": 2000
201
  },
202
  {
203
- "epoch": 3.2,
204
- "eval_loss": 0.3621469736099243,
205
- "eval_runtime": 82.21,
206
- "eval_samples_per_second": 24.328,
207
- "eval_wer": 0.31018742280221256,
208
  "step": 2000
209
  },
210
  {
211
- "epoch": 3.36,
212
- "learning_rate": 0.0002729508196721311,
213
- "loss": 0.3014,
214
  "step": 2100
215
  },
216
  {
217
- "epoch": 3.52,
218
- "learning_rate": 0.00027131147540983606,
219
- "loss": 0.2984,
220
  "step": 2200
221
  },
222
  {
223
- "epoch": 3.52,
224
- "eval_loss": 0.35865798592567444,
225
- "eval_runtime": 83.2434,
226
- "eval_samples_per_second": 24.026,
227
- "eval_wer": 0.2970302346812738,
228
  "step": 2200
229
  },
230
  {
231
- "epoch": 3.68,
232
- "learning_rate": 0.00026967213114754095,
233
- "loss": 0.2826,
234
  "step": 2300
235
  },
236
  {
237
- "epoch": 3.84,
238
- "learning_rate": 0.0002680327868852459,
239
- "loss": 0.2821,
240
  "step": 2400
241
  },
242
  {
243
- "epoch": 3.84,
244
- "eval_loss": 0.3647235035896301,
245
- "eval_runtime": 83.2284,
246
- "eval_samples_per_second": 24.03,
247
- "eval_wer": 0.30664303743085763,
248
  "step": 2400
249
  },
250
  {
251
- "epoch": 4.0,
252
- "learning_rate": 0.0002663934426229508,
253
- "loss": 0.27,
254
  "step": 2500
255
  },
256
  {
257
- "epoch": 4.16,
258
- "learning_rate": 0.0002647540983606557,
259
- "loss": 0.2433,
260
  "step": 2600
261
  },
262
  {
263
- "epoch": 4.16,
264
- "eval_loss": 0.3836052119731903,
265
- "eval_runtime": 82.8815,
266
- "eval_samples_per_second": 24.131,
267
- "eval_wer": 0.3012190537565115,
268
  "step": 2600
269
  },
270
  {
271
- "epoch": 4.32,
272
- "learning_rate": 0.00026311475409836063,
273
- "loss": 0.2373,
274
  "step": 2700
275
  },
276
  {
277
- "epoch": 4.48,
278
- "learning_rate": 0.00026147540983606553,
279
- "loss": 0.2304,
280
  "step": 2800
281
  },
282
  {
283
- "epoch": 4.48,
284
- "eval_loss": 0.3565887212753296,
285
- "eval_runtime": 83.2398,
286
- "eval_samples_per_second": 24.027,
287
- "eval_wer": 0.2935395521185758,
288
  "step": 2800
289
- },
290
- {
291
- "epoch": 4.64,
292
- "learning_rate": 0.0002598360655737705,
293
- "loss": 0.2262,
294
- "step": 2900
295
- },
296
- {
297
- "epoch": 4.8,
298
- "learning_rate": 0.00025819672131147537,
299
- "loss": 0.2249,
300
- "step": 3000
301
- },
302
- {
303
- "epoch": 4.8,
304
- "eval_loss": 0.371224969625473,
305
- "eval_runtime": 83.7191,
306
- "eval_samples_per_second": 23.889,
307
- "eval_wer": 0.285913753289297,
308
- "step": 3000
309
- },
310
- {
311
- "epoch": 4.96,
312
- "learning_rate": 0.00025655737704918027,
313
- "loss": 0.2232,
314
- "step": 3100
315
- },
316
- {
317
- "epoch": 5.12,
318
- "learning_rate": 0.0002549180327868852,
319
- "loss": 0.2055,
320
- "step": 3200
321
- },
322
- {
323
- "epoch": 5.12,
324
- "eval_loss": 0.36438417434692383,
325
- "eval_runtime": 82.4039,
326
- "eval_samples_per_second": 24.271,
327
- "eval_wer": 0.28048976961495087,
328
- "step": 3200
329
- },
330
- {
331
- "epoch": 5.28,
332
- "learning_rate": 0.00025327868852459016,
333
- "loss": 0.1999,
334
- "step": 3300
335
- },
336
- {
337
- "epoch": 5.44,
338
- "learning_rate": 0.00025163934426229506,
339
- "loss": 0.1969,
340
- "step": 3400
341
- },
342
- {
343
- "epoch": 5.44,
344
- "eval_loss": 0.371999055147171,
345
- "eval_runtime": 83.0961,
346
- "eval_samples_per_second": 24.069,
347
- "eval_wer": 0.28204715106600076,
348
- "step": 3400
349
- },
350
- {
351
- "epoch": 5.6,
352
- "learning_rate": 0.00025,
353
- "loss": 0.1949,
354
- "step": 3500
355
- },
356
- {
357
- "epoch": 5.76,
358
- "learning_rate": 0.0002483606557377049,
359
- "loss": 0.1945,
360
- "step": 3600
361
- },
362
- {
363
- "epoch": 5.76,
364
- "eval_loss": 0.3662562370300293,
365
- "eval_runtime": 82.7035,
366
- "eval_samples_per_second": 24.183,
367
- "eval_wer": 0.28435637183824714,
368
- "step": 3600
369
- },
370
- {
371
- "epoch": 5.92,
372
- "learning_rate": 0.00024672131147540985,
373
- "loss": 0.191,
374
- "step": 3700
375
- },
376
- {
377
- "epoch": 6.08,
378
- "learning_rate": 0.00024508196721311474,
379
- "loss": 0.1689,
380
- "step": 3800
381
- },
382
- {
383
- "epoch": 6.08,
384
- "eval_loss": 0.3731316328048706,
385
- "eval_runtime": 83.1862,
386
- "eval_samples_per_second": 24.042,
387
- "eval_wer": 0.2787712797379303,
388
- "step": 3800
389
- },
390
- {
391
- "epoch": 6.24,
392
- "learning_rate": 0.00024344262295081966,
393
- "loss": 0.1631,
394
- "step": 3900
395
- },
396
- {
397
- "epoch": 6.4,
398
- "learning_rate": 0.00024180327868852458,
399
- "loss": 0.1568,
400
- "step": 4000
401
- },
402
- {
403
- "epoch": 6.4,
404
- "eval_loss": 0.37625598907470703,
405
- "eval_runtime": 83.6104,
406
- "eval_samples_per_second": 23.92,
407
- "eval_wer": 0.2781805488427045,
408
- "step": 4000
409
- },
410
- {
411
- "epoch": 6.56,
412
- "learning_rate": 0.00024016393442622948,
413
- "loss": 0.1665,
414
- "step": 4100
415
- },
416
- {
417
- "epoch": 6.72,
418
- "learning_rate": 0.0002385245901639344,
419
- "loss": 0.1581,
420
- "step": 4200
421
- },
422
- {
423
- "epoch": 6.72,
424
- "eval_loss": 0.3642520606517792,
425
- "eval_runtime": 83.3706,
426
- "eval_samples_per_second": 23.989,
427
- "eval_wer": 0.2725954567423876,
428
- "step": 4200
429
- },
430
- {
431
- "epoch": 6.88,
432
- "learning_rate": 0.00023688524590163932,
433
- "loss": 0.1517,
434
- "step": 4300
435
- },
436
- {
437
- "epoch": 7.04,
438
- "learning_rate": 0.00023524590163934424,
439
- "loss": 0.1529,
440
- "step": 4400
441
- },
442
- {
443
- "epoch": 7.04,
444
- "eval_loss": 0.3819567859172821,
445
- "eval_runtime": 83.7194,
446
- "eval_samples_per_second": 23.889,
447
- "eval_wer": 0.27238064550776003,
448
- "step": 4400
449
- },
450
- {
451
- "epoch": 7.2,
452
- "learning_rate": 0.00023360655737704916,
453
- "loss": 0.1344,
454
- "step": 4500
455
- },
456
- {
457
- "epoch": 7.36,
458
- "learning_rate": 0.00023196721311475406,
459
- "loss": 0.1363,
460
- "step": 4600
461
- },
462
- {
463
- "epoch": 7.36,
464
- "eval_loss": 0.38544762134552,
465
- "eval_runtime": 83.3319,
466
- "eval_samples_per_second": 24.0,
467
- "eval_wer": 0.2733472960635841,
468
- "step": 4600
469
- },
470
- {
471
- "epoch": 7.52,
472
- "learning_rate": 0.00023032786885245898,
473
- "loss": 0.1276,
474
- "step": 4700
475
- },
476
- {
477
- "epoch": 7.68,
478
- "learning_rate": 0.0002286885245901639,
479
- "loss": 0.1252,
480
- "step": 4800
481
- },
482
- {
483
- "epoch": 7.68,
484
- "eval_loss": 0.37892764806747437,
485
- "eval_runtime": 83.6054,
486
- "eval_samples_per_second": 23.922,
487
- "eval_wer": 0.2722732398904463,
488
- "step": 4800
489
- },
490
- {
491
- "epoch": 7.84,
492
- "learning_rate": 0.00022704918032786882,
493
- "loss": 0.1328,
494
- "step": 4900
495
- },
496
- {
497
- "epoch": 8.0,
498
- "learning_rate": 0.00022540983606557374,
499
- "loss": 0.1327,
500
- "step": 5000
501
- },
502
- {
503
- "epoch": 8.0,
504
- "eval_loss": 0.3974834084510803,
505
- "eval_runtime": 83.8203,
506
- "eval_samples_per_second": 23.861,
507
- "eval_wer": 0.2739380269588099,
508
- "step": 5000
509
- },
510
- {
511
- "epoch": 8.16,
512
- "learning_rate": 0.0002237704918032787,
513
- "loss": 0.1176,
514
- "step": 5100
515
- },
516
- {
517
- "epoch": 8.32,
518
- "learning_rate": 0.0002221311475409836,
519
- "loss": 0.1157,
520
- "step": 5200
521
- },
522
- {
523
- "epoch": 8.32,
524
- "eval_loss": 0.3960728347301483,
525
- "eval_runtime": 84.4842,
526
- "eval_samples_per_second": 23.673,
527
- "eval_wer": 0.2711991837173084,
528
- "step": 5200
529
- },
530
- {
531
- "epoch": 8.48,
532
- "learning_rate": 0.0002204918032786885,
533
- "loss": 0.1151,
534
- "step": 5300
535
- },
536
- {
537
- "epoch": 8.64,
538
- "learning_rate": 0.00021885245901639343,
539
- "loss": 0.1173,
540
- "step": 5400
541
- },
542
- {
543
- "epoch": 8.64,
544
- "eval_loss": 0.40709516406059265,
545
- "eval_runtime": 82.9277,
546
- "eval_samples_per_second": 24.117,
547
- "eval_wer": 0.2727565651683583,
548
- "step": 5400
549
- },
550
- {
551
- "epoch": 8.8,
552
- "learning_rate": 0.00021721311475409835,
553
- "loss": 0.1143,
554
- "step": 5500
555
- },
556
- {
557
- "epoch": 8.96,
558
- "learning_rate": 0.00021557377049180327,
559
- "loss": 0.1166,
560
- "step": 5600
561
- },
562
- {
563
- "epoch": 8.96,
564
- "eval_loss": 0.41475972533226013,
565
- "eval_runtime": 84.4573,
566
- "eval_samples_per_second": 23.681,
567
- "eval_wer": 0.2736695129155255,
568
- "step": 5600
569
- },
570
- {
571
- "epoch": 9.12,
572
- "learning_rate": 0.0002139344262295082,
573
- "loss": 0.1028,
574
- "step": 5700
575
- },
576
- {
577
- "epoch": 9.28,
578
- "learning_rate": 0.00021229508196721309,
579
- "loss": 0.1026,
580
- "step": 5800
581
- },
582
- {
583
- "epoch": 9.28,
584
- "eval_loss": 0.4114053547382355,
585
- "eval_runtime": 83.5505,
586
- "eval_samples_per_second": 23.938,
587
- "eval_wer": 0.2681381236238655,
588
- "step": 5800
589
- },
590
- {
591
- "epoch": 9.44,
592
- "learning_rate": 0.000210655737704918,
593
- "loss": 0.1004,
594
- "step": 5900
595
- },
596
- {
597
- "epoch": 9.6,
598
- "learning_rate": 0.00020901639344262293,
599
- "loss": 0.1121,
600
- "step": 6000
601
- },
602
- {
603
- "epoch": 9.6,
604
- "eval_loss": 0.4229777753353119,
605
- "eval_runtime": 83.5437,
606
- "eval_samples_per_second": 23.94,
607
- "eval_wer": 0.27060845282208257,
608
- "step": 6000
609
- },
610
- {
611
- "epoch": 9.76,
612
- "learning_rate": 0.00020737704918032785,
613
- "loss": 0.1026,
614
- "step": 6100
615
- },
616
- {
617
- "epoch": 9.92,
618
- "learning_rate": 0.00020573770491803277,
619
- "loss": 0.1041,
620
- "step": 6200
621
- },
622
- {
623
- "epoch": 9.92,
624
- "eval_loss": 0.40711304545402527,
625
- "eval_runtime": 83.5856,
626
- "eval_samples_per_second": 23.928,
627
- "eval_wer": 0.27017883035282747,
628
- "step": 6200
629
- },
630
- {
631
- "epoch": 10.08,
632
- "learning_rate": 0.0002040983606557377,
633
- "loss": 0.0877,
634
- "step": 6300
635
- },
636
- {
637
- "epoch": 10.24,
638
- "learning_rate": 0.0002024590163934426,
639
- "loss": 0.088,
640
- "step": 6400
641
- },
642
- {
643
- "epoch": 10.24,
644
- "eval_loss": 0.437641978263855,
645
- "eval_runtime": 83.2287,
646
- "eval_samples_per_second": 24.03,
647
- "eval_wer": 0.26797701519789485,
648
- "step": 6400
649
- },
650
- {
651
- "epoch": 10.4,
652
- "learning_rate": 0.0002008196721311475,
653
- "loss": 0.0941,
654
- "step": 6500
655
- },
656
- {
657
- "epoch": 10.56,
658
- "learning_rate": 0.00019918032786885243,
659
- "loss": 0.0884,
660
- "step": 6600
661
- },
662
- {
663
- "epoch": 10.56,
664
- "eval_loss": 0.4451253414154053,
665
- "eval_runtime": 84.0696,
666
- "eval_samples_per_second": 23.79,
667
- "eval_wer": 0.26529187476505023,
668
- "step": 6600
669
- },
670
- {
671
- "epoch": 10.72,
672
- "learning_rate": 0.00019754098360655735,
673
- "loss": 0.0867,
674
- "step": 6700
675
- },
676
- {
677
- "epoch": 10.88,
678
- "learning_rate": 0.00019590163934426227,
679
- "loss": 0.0978,
680
- "step": 6800
681
- },
682
- {
683
- "epoch": 10.88,
684
- "eval_loss": 0.4322107136249542,
685
- "eval_runtime": 83.5762,
686
- "eval_samples_per_second": 23.93,
687
- "eval_wer": 0.26475484667848126,
688
- "step": 6800
689
- },
690
- {
691
- "epoch": 11.04,
692
- "learning_rate": 0.00019426229508196722,
693
- "loss": 0.0834,
694
- "step": 6900
695
- },
696
- {
697
- "epoch": 11.2,
698
- "learning_rate": 0.00019262295081967214,
699
- "loss": 0.0785,
700
- "step": 7000
701
- },
702
- {
703
- "epoch": 11.2,
704
- "eval_loss": 0.4244215190410614,
705
- "eval_runtime": 83.288,
706
- "eval_samples_per_second": 24.013,
707
- "eval_wer": 0.25970678266473335,
708
- "step": 7000
709
- },
710
- {
711
- "epoch": 11.36,
712
- "learning_rate": 0.00019098360655737704,
713
- "loss": 0.0723,
714
- "step": 7100
715
- },
716
- {
717
- "epoch": 11.52,
718
- "learning_rate": 0.00018934426229508196,
719
- "loss": 0.0771,
720
- "step": 7200
721
- },
722
- {
723
- "epoch": 11.52,
724
- "eval_loss": 0.43486374616622925,
725
- "eval_runtime": 83.8141,
726
- "eval_samples_per_second": 23.862,
727
- "eval_wer": 0.25755867031845764,
728
- "step": 7200
729
- },
730
- {
731
- "epoch": 11.68,
732
- "learning_rate": 0.00018770491803278688,
733
- "loss": 0.0787,
734
- "step": 7300
735
- },
736
- {
737
- "epoch": 11.84,
738
- "learning_rate": 0.0001860655737704918,
739
- "loss": 0.0809,
740
- "step": 7400
741
- },
742
- {
743
- "epoch": 11.84,
744
- "eval_loss": 0.44311779737472534,
745
- "eval_runtime": 85.6363,
746
- "eval_samples_per_second": 23.355,
747
- "eval_wer": 0.2628215455668331,
748
- "step": 7400
749
- },
750
- {
751
- "epoch": 12.0,
752
- "learning_rate": 0.00018442622950819672,
753
- "loss": 0.0778,
754
- "step": 7500
755
- },
756
- {
757
- "epoch": 12.16,
758
- "learning_rate": 0.00018278688524590162,
759
- "loss": 0.071,
760
- "step": 7600
761
- },
762
- {
763
- "epoch": 12.16,
764
- "eval_loss": 0.47199195623397827,
765
- "eval_runtime": 82.9761,
766
- "eval_samples_per_second": 24.103,
767
- "eval_wer": 0.2588475377262231,
768
- "step": 7600
769
- },
770
- {
771
- "epoch": 12.32,
772
- "learning_rate": 0.00018114754098360654,
773
- "loss": 0.074,
774
- "step": 7700
775
- },
776
- {
777
- "epoch": 12.48,
778
- "learning_rate": 0.00017950819672131146,
779
- "loss": 0.0677,
780
- "step": 7800
781
- },
782
- {
783
- "epoch": 12.48,
784
- "eval_loss": 0.4387381672859192,
785
- "eval_runtime": 83.0897,
786
- "eval_samples_per_second": 24.07,
787
- "eval_wer": 0.259867891090704,
788
- "step": 7800
789
- },
790
- {
791
- "epoch": 12.64,
792
- "learning_rate": 0.00017786885245901638,
793
- "loss": 0.0703,
794
- "step": 7900
795
- },
796
- {
797
- "epoch": 12.8,
798
- "learning_rate": 0.0001762295081967213,
799
- "loss": 0.0765,
800
- "step": 8000
801
- },
802
- {
803
- "epoch": 12.8,
804
- "eval_loss": 0.4592679738998413,
805
- "eval_runtime": 84.0398,
806
- "eval_samples_per_second": 23.798,
807
- "eval_wer": 0.2572364534665163,
808
- "step": 8000
809
- },
810
- {
811
- "epoch": 12.96,
812
- "learning_rate": 0.0001745901639344262,
813
- "loss": 0.0683,
814
- "step": 8100
815
- },
816
- {
817
- "epoch": 13.12,
818
- "learning_rate": 0.00017295081967213112,
819
- "loss": 0.0621,
820
- "step": 8200
821
- },
822
- {
823
- "epoch": 13.12,
824
- "eval_loss": 0.4588267505168915,
825
- "eval_runtime": 82.8224,
826
- "eval_samples_per_second": 24.148,
827
- "eval_wer": 0.2633585736534021,
828
- "step": 8200
829
- },
830
- {
831
- "epoch": 13.28,
832
- "learning_rate": 0.00017131147540983604,
833
- "loss": 0.065,
834
- "step": 8300
835
- },
836
- {
837
- "epoch": 13.44,
838
- "learning_rate": 0.00016967213114754096,
839
- "loss": 0.067,
840
- "step": 8400
841
- },
842
- {
843
- "epoch": 13.44,
844
- "eval_loss": 0.4433707296848297,
845
- "eval_runtime": 84.8017,
846
- "eval_samples_per_second": 23.584,
847
- "eval_wer": 0.25922345738682134,
848
- "step": 8400
849
- },
850
- {
851
- "epoch": 13.6,
852
- "learning_rate": 0.00016803278688524588,
853
- "loss": 0.067,
854
- "step": 8500
855
- },
856
- {
857
- "epoch": 13.76,
858
- "learning_rate": 0.0001663934426229508,
859
- "loss": 0.0633,
860
- "step": 8600
861
- },
862
- {
863
- "epoch": 13.76,
864
- "eval_loss": 0.4525003433227539,
865
- "eval_runtime": 82.3869,
866
- "eval_samples_per_second": 24.276,
867
- "eval_wer": 0.2647011438698244,
868
- "step": 8600
869
- },
870
- {
871
- "epoch": 13.92,
872
- "learning_rate": 0.00016475409836065575,
873
- "loss": 0.0704,
874
- "step": 8700
875
- },
876
- {
877
- "epoch": 14.08,
878
- "learning_rate": 0.00016311475409836064,
879
- "loss": 0.0635,
880
- "step": 8800
881
- },
882
- {
883
- "epoch": 14.08,
884
- "eval_loss": 0.46746838092803955,
885
- "eval_runtime": 82.2147,
886
- "eval_samples_per_second": 24.327,
887
- "eval_wer": 0.2580419955963697,
888
- "step": 8800
889
- },
890
- {
891
- "epoch": 14.24,
892
- "learning_rate": 0.00016147540983606556,
893
- "loss": 0.0568,
894
- "step": 8900
895
- },
896
- {
897
- "epoch": 14.4,
898
- "learning_rate": 0.00015983606557377049,
899
- "loss": 0.06,
900
- "step": 9000
901
- },
902
- {
903
- "epoch": 14.4,
904
- "eval_loss": 0.46421578526496887,
905
- "eval_runtime": 84.6457,
906
- "eval_samples_per_second": 23.628,
907
- "eval_wer": 0.25841791525696794,
908
- "step": 9000
909
- },
910
- {
911
- "epoch": 14.56,
912
- "learning_rate": 0.0001581967213114754,
913
- "loss": 0.0588,
914
- "step": 9100
915
- },
916
- {
917
- "epoch": 14.72,
918
- "learning_rate": 0.00015655737704918033,
919
- "loss": 0.0618,
920
- "step": 9200
921
- },
922
- {
923
- "epoch": 14.72,
924
- "eval_loss": 0.465658038854599,
925
- "eval_runtime": 83.6497,
926
- "eval_samples_per_second": 23.909,
927
- "eval_wer": 0.2606734332205574,
928
- "step": 9200
929
- },
930
- {
931
- "epoch": 14.88,
932
- "learning_rate": 0.00015491803278688525,
933
- "loss": 0.0578,
934
- "step": 9300
935
- },
936
- {
937
- "epoch": 15.04,
938
- "learning_rate": 0.00015327868852459014,
939
- "loss": 0.0562,
940
- "step": 9400
941
- },
942
- {
943
- "epoch": 15.04,
944
- "eval_loss": 0.4753575325012207,
945
- "eval_runtime": 82.0241,
946
- "eval_samples_per_second": 24.383,
947
- "eval_wer": 0.25831050963965413,
948
- "step": 9400
949
- },
950
- {
951
- "epoch": 15.2,
952
- "learning_rate": 0.00015163934426229507,
953
- "loss": 0.0489,
954
- "step": 9500
955
- },
956
- {
957
- "epoch": 15.36,
958
- "learning_rate": 0.00015,
959
- "loss": 0.0528,
960
- "step": 9600
961
- },
962
- {
963
- "epoch": 15.36,
964
- "eval_loss": 0.48737889528274536,
965
- "eval_runtime": 85.0733,
966
- "eval_samples_per_second": 23.509,
967
- "eval_wer": 0.2623382202889211,
968
- "step": 9600
969
- },
970
- {
971
- "epoch": 15.52,
972
- "learning_rate": 0.0001483606557377049,
973
- "loss": 0.0522,
974
- "step": 9700
975
- },
976
- {
977
- "epoch": 15.68,
978
- "learning_rate": 0.00014672131147540983,
979
- "loss": 0.0528,
980
- "step": 9800
981
- },
982
- {
983
- "epoch": 15.68,
984
- "eval_loss": 0.47928667068481445,
985
- "eval_runtime": 84.0501,
986
- "eval_samples_per_second": 23.795,
987
- "eval_wer": 0.26206970624563664,
988
- "step": 9800
989
- },
990
- {
991
- "epoch": 15.84,
992
- "learning_rate": 0.00014508196721311472,
993
- "loss": 0.0503,
994
- "step": 9900
995
- },
996
- {
997
- "epoch": 16.0,
998
- "learning_rate": 0.00014344262295081964,
999
- "loss": 0.0507,
1000
- "step": 10000
1001
- },
1002
- {
1003
- "epoch": 16.0,
1004
- "eval_loss": 0.46980950236320496,
1005
- "eval_runtime": 82.8709,
1006
- "eval_samples_per_second": 24.134,
1007
- "eval_wer": 0.24944954621126686,
1008
- "step": 10000
1009
  }
1010
  ],
1011
- "max_steps": 18750,
1012
- "num_train_epochs": 30,
1013
- "total_flos": 7.756303740936756e+19,
1014
  "trial_name": null,
1015
  "trial_params": null
1016
  }
 
1
  {
2
+ "best_metric": 0.24131617493199414,
3
+ "best_model_checkpoint": "/workspace/output_models/hi-mr/wav2vec2-large-xlsr-hindi-marathi-3/checkpoint-2800",
4
+ "epoch": 4.444444444444445,
5
+ "global_step": 2800,
6
  "is_hyper_param_search": false,
7
  "is_local_process_zero": true,
8
  "is_world_process_zero": true,
9
  "log_history": [
10
  {
11
  "epoch": 0.16,
12
+ "learning_rate": 6.666666666666667e-06,
13
+ "loss": 1.1154,
14
  "step": 100
15
  },
16
  {
17
  "epoch": 0.32,
18
+ "learning_rate": 1.3333333333333333e-05,
19
+ "loss": 0.252,
20
  "step": 200
21
  },
22
  {
23
  "epoch": 0.32,
24
+ "eval_loss": 0.49659740924835205,
25
+ "eval_runtime": 153.7026,
26
+ "eval_samples_per_second": 26.851,
27
+ "eval_wer": 0.27688847039129527,
28
  "step": 200
29
  },
30
  {
31
  "epoch": 0.48,
32
+ "learning_rate": 1.9999999999999998e-05,
33
+ "loss": 0.1238,
34
  "step": 300
35
  },
36
  {
37
+ "epoch": 0.63,
38
+ "learning_rate": 2.6666666666666667e-05,
39
+ "loss": 0.0989,
40
  "step": 400
41
  },
42
  {
43
+ "epoch": 0.63,
44
+ "eval_loss": 0.49464675784111023,
45
+ "eval_runtime": 152.2596,
46
+ "eval_samples_per_second": 27.105,
47
+ "eval_wer": 0.25449884913161747,
48
  "step": 400
49
  },
50
  {
51
+ "epoch": 0.79,
52
+ "learning_rate": 2.9743589743589744e-05,
53
+ "loss": 0.0872,
54
  "step": 500
55
  },
56
  {
57
+ "epoch": 0.95,
58
+ "learning_rate": 2.923076923076923e-05,
59
+ "loss": 0.0882,
60
  "step": 600
61
  },
62
  {
63
+ "epoch": 0.95,
64
+ "eval_loss": 0.48914414644241333,
65
+ "eval_runtime": 153.1646,
66
+ "eval_samples_per_second": 26.945,
67
+ "eval_wer": 0.24939840970914418,
68
  "step": 600
69
  },
70
  {
71
+ "epoch": 1.11,
72
+ "learning_rate": 2.871794871794872e-05,
73
+ "loss": 0.0801,
74
  "step": 700
75
  },
76
  {
77
+ "epoch": 1.27,
78
+ "learning_rate": 2.8205128205128207e-05,
79
+ "loss": 0.0769,
80
  "step": 800
81
  },
82
  {
83
+ "epoch": 1.27,
84
+ "eval_loss": 0.4904399812221527,
85
+ "eval_runtime": 151.6576,
86
+ "eval_samples_per_second": 27.213,
87
+ "eval_wer": 0.24746285833856455,
88
  "step": 800
89
  },
90
  {
91
+ "epoch": 1.43,
92
+ "learning_rate": 2.7692307692307694e-05,
93
+ "loss": 0.0755,
94
  "step": 900
95
  },
96
  {
97
+ "epoch": 1.59,
98
+ "learning_rate": 2.717948717948718e-05,
99
+ "loss": 0.0682,
100
  "step": 1000
101
  },
102
  {
103
+ "epoch": 1.59,
104
+ "eval_loss": 0.49137312173843384,
105
+ "eval_runtime": 150.2065,
106
+ "eval_samples_per_second": 27.476,
107
+ "eval_wer": 0.24620736555764805,
108
  "step": 1000
109
  },
110
  {
111
+ "epoch": 1.75,
112
+ "learning_rate": 2.6666666666666667e-05,
113
+ "loss": 0.0664,
114
  "step": 1100
115
  },
116
  {
117
+ "epoch": 1.9,
118
+ "learning_rate": 2.6153846153846157e-05,
119
+ "loss": 0.0669,
120
  "step": 1200
121
  },
122
  {
123
+ "epoch": 1.9,
124
+ "eval_loss": 0.4783032238483429,
125
+ "eval_runtime": 152.2438,
126
+ "eval_samples_per_second": 27.108,
127
+ "eval_wer": 0.24448106298388783,
128
  "step": 1200
129
  },
130
  {
131
+ "epoch": 2.06,
132
+ "learning_rate": 2.564102564102564e-05,
133
+ "loss": 0.0681,
134
  "step": 1300
135
  },
136
  {
137
+ "epoch": 2.22,
138
+ "learning_rate": 2.512820512820513e-05,
139
+ "loss": 0.062,
140
  "step": 1400
141
  },
142
  {
143
+ "epoch": 2.22,
144
+ "eval_loss": 0.492949515581131,
145
+ "eval_runtime": 151.7551,
146
+ "eval_samples_per_second": 27.195,
147
+ "eval_wer": 0.24312094580456162,
148
  "step": 1400
149
  },
150
  {
151
+ "epoch": 2.38,
152
+ "learning_rate": 2.4615384615384616e-05,
153
+ "loss": 0.0603,
154
  "step": 1500
155
  },
156
  {
157
+ "epoch": 2.54,
158
+ "learning_rate": 2.4102564102564103e-05,
159
+ "loss": 0.0627,
160
  "step": 1600
161
  },
162
  {
163
+ "epoch": 2.54,
164
+ "eval_loss": 0.48576003313064575,
165
+ "eval_runtime": 151.5396,
166
+ "eval_samples_per_second": 27.234,
167
+ "eval_wer": 0.24445490688428542,
168
  "step": 1600
169
  },
170
  {
171
+ "epoch": 2.7,
172
+ "learning_rate": 2.358974358974359e-05,
173
+ "loss": 0.0601,
174
  "step": 1700
175
  },
176
  {
177
+ "epoch": 2.86,
178
+ "learning_rate": 2.307692307692308e-05,
179
+ "loss": 0.0569,
180
  "step": 1800
181
  },
182
  {
183
+ "epoch": 2.86,
184
+ "eval_loss": 0.4850601851940155,
185
+ "eval_runtime": 152.3874,
186
+ "eval_samples_per_second": 27.082,
187
+ "eval_wer": 0.24267629211132036,
188
  "step": 1800
189
  },
190
  {
191
+ "epoch": 3.02,
192
+ "learning_rate": 2.2564102564102566e-05,
193
+ "loss": 0.0526,
194
  "step": 1900
195
  },
196
  {
197
+ "epoch": 3.17,
198
+ "learning_rate": 2.2051282051282052e-05,
199
+ "loss": 0.0439,
200
  "step": 2000
201
  },
202
  {
203
+ "epoch": 3.17,
204
+ "eval_loss": 0.47941696643829346,
205
+ "eval_runtime": 152.2838,
206
+ "eval_samples_per_second": 27.101,
207
+ "eval_wer": 0.2431994141033689,
208
  "step": 2000
209
  },
210
  {
211
+ "epoch": 3.33,
212
+ "learning_rate": 2.153846153846154e-05,
213
+ "loss": 0.0486,
214
  "step": 2100
215
  },
216
  {
217
+ "epoch": 3.49,
218
+ "learning_rate": 2.1025641025641025e-05,
219
+ "loss": 0.0437,
220
  "step": 2200
221
  },
222
  {
223
+ "epoch": 3.49,
224
+ "eval_loss": 0.481067955493927,
225
+ "eval_runtime": 151.9904,
226
+ "eval_samples_per_second": 27.153,
227
+ "eval_wer": 0.2431994141033689,
228
  "step": 2200
229
  },
230
  {
231
+ "epoch": 3.65,
232
+ "learning_rate": 2.0512820512820515e-05,
233
+ "loss": 0.0384,
234
  "step": 2300
235
  },
236
  {
237
+ "epoch": 3.81,
238
+ "learning_rate": 1.9999999999999998e-05,
239
+ "loss": 0.0415,
240
  "step": 2400
241
  },
242
  {
243
+ "epoch": 3.81,
244
+ "eval_loss": 0.4836219847202301,
245
+ "eval_runtime": 152.3729,
246
+ "eval_samples_per_second": 27.085,
247
+ "eval_wer": 0.24212701401966938,
248
  "step": 2400
249
  },
250
  {
251
+ "epoch": 3.97,
252
+ "learning_rate": 1.9487179487179488e-05,
253
+ "loss": 0.0398,
254
  "step": 2500
255
  },
256
  {
257
+ "epoch": 4.13,
258
+ "learning_rate": 1.8974358974358975e-05,
259
+ "loss": 0.0399,
260
  "step": 2600
261
  },
262
  {
263
+ "epoch": 4.13,
264
+ "eval_loss": 0.48345065116882324,
265
+ "eval_runtime": 151.6188,
266
+ "eval_samples_per_second": 27.22,
267
+ "eval_wer": 0.24170851642603056,
268
  "step": 2600
269
  },
270
  {
271
+ "epoch": 4.29,
272
+ "learning_rate": 1.8461538461538465e-05,
273
+ "loss": 0.0367,
274
  "step": 2700
275
  },
276
  {
277
+ "epoch": 4.44,
278
+ "learning_rate": 1.7948717948717948e-05,
279
+ "loss": 0.0361,
280
  "step": 2800
281
  },
282
  {
283
+ "epoch": 4.44,
284
+ "eval_loss": 0.4902171790599823,
285
+ "eval_runtime": 152.2588,
286
+ "eval_samples_per_second": 27.105,
287
+ "eval_wer": 0.24131617493199414,
288
  "step": 2800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
289
  }
290
  ],
291
+ "max_steps": 6300,
292
+ "num_train_epochs": 10,
293
+ "total_flos": 2.1761689418766148e+19,
294
  "trial_name": null,
295
  "trial_params": null
296
  }
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f9f1cf07032e95b729864528346e3e38cb097599f2b03403cc89e7a553263ec2
3
  size 2351
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4e43089cce3509942d599d030fda34b6b77b40e5839002693f8638c39f46025
3
  size 2351