tanmaylaud
commited on
Commit
·
0a1bc74
1
Parent(s):
d7aa717
updated model weights
Browse files- .ipynb_checkpoints/README-checkpoint.md +115 -0
- .ipynb_checkpoints/vocab-checkpoint.json +1 -0
- config.json +1 -1
- optimizer.pt +1 -1
- pytorch_model.bin +2 -2
- scheduler.pt +1 -1
- trainer_state.json +157 -877
- training_args.bin +1 -1
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: mr
|
3 |
+
datasets:
|
4 |
+
- openslr
|
5 |
+
- interspeech_2021_asr
|
6 |
+
metrics:
|
7 |
+
- wer
|
8 |
+
tags:
|
9 |
+
- audio
|
10 |
+
- automatic-speech-recognition
|
11 |
+
- speech
|
12 |
+
- xlsr-fine-tuning-week
|
13 |
+
- hindi
|
14 |
+
- marathi
|
15 |
+
license: apache-2.0
|
16 |
+
model-index:
|
17 |
+
- name: XLSR Wav2Vec2 Large 53 Hindi-Marathi by Tanmay Laud
|
18 |
+
results:
|
19 |
+
- task:
|
20 |
+
name: Speech Recognition
|
21 |
+
type: automatic-speech-recognition
|
22 |
+
dataset:
|
23 |
+
name: OpenSLR hi, OpenSLR mr
|
24 |
+
type: openslr, interspeech_2021_asr
|
25 |
+
metrics:
|
26 |
+
- name: Test WER
|
27 |
+
type: wer
|
28 |
+
value: 24.92
|
29 |
+
---
|
30 |
+
|
31 |
+
# Wav2Vec2-Large-XLSR-53-Hindi-Marathi
|
32 |
+
Fine-tuned facebook/wav2vec2-large-xlsr-53 on Hindi and Marathi using the OpenSLR SLR64 datasets. When using this model, make sure that your speech input is sampled at 16kHz.
|
33 |
+
|
34 |
+
## Usage
|
35 |
+
The model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi text and audio_path fields:
|
36 |
+
|
37 |
+
```
|
38 |
+
import torch
|
39 |
+
import torchaudio
|
40 |
+
import librosa
|
41 |
+
from datasets import load_dataset
|
42 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
43 |
+
|
44 |
+
# test_data = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section.
|
45 |
+
|
46 |
+
processor = Wav2Vec2Processor.from_pretrained("tanmaylaud/wav2vec2-large-xlsr-hindi-marathi")
|
47 |
+
model = Wav2Vec2ForCTC.from_pretrained("tanmaylaud/wav2vec2-large-xlsr-hindi-marathi")
|
48 |
+
|
49 |
+
# Preprocessing the datasets.
|
50 |
+
# We need to read the audio files as arrays
|
51 |
+
def speech_file_to_array_fn(batch):
|
52 |
+
speech_array, sampling_rate = torchaudio.load(batch["audio_path"])
|
53 |
+
batch["speech"] = librosa.resample(speech_array[0].numpy(), sampling_rate, 16_000) # sampling_rate can vary
|
54 |
+
return batch
|
55 |
+
|
56 |
+
test_data= test_data.map(speech_file_to_array_fn)
|
57 |
+
inputs = processor(test_data["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
58 |
+
|
59 |
+
with torch.no_grad():
|
60 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
61 |
+
|
62 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
63 |
+
|
64 |
+
print("Prediction:", processor.batch_decode(predicted_ids))
|
65 |
+
print("Reference:", test_data["text"][:2])
|
66 |
+
Evaluation
|
67 |
+
The model can be evaluated as follows on 10% of the Marathi data on OpenSLR.
|
68 |
+
```
|
69 |
+
```
|
70 |
+
import torchaudio
|
71 |
+
from datasets import load_metric
|
72 |
+
from transformers import Wav2Vec2Processor,Wav2Vec2ForCTC
|
73 |
+
import torch
|
74 |
+
import librosa
|
75 |
+
import numpy as np
|
76 |
+
import re
|
77 |
+
|
78 |
+
wer = load_metric("wer")
|
79 |
+
processor = Wav2Vec2Processor.from_pretrained("tanmaylaud/wav2vec2-large-xlsr-hindi-marathi")
|
80 |
+
model = Wav2Vec2ForCTC.from_pretrained("tanmaylaud/wav2vec2-large-xlsr-hindi-marathi")
|
81 |
+
|
82 |
+
model.to("cuda")
|
83 |
+
|
84 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\।]'
|
85 |
+
|
86 |
+
# Preprocessing the datasets.
|
87 |
+
# We need to read the audio files as arrays
|
88 |
+
def speech_file_to_array_fn(batch):
|
89 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"])
|
90 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
91 |
+
batch["speech"] = speech_array[0].numpy()
|
92 |
+
batch["sampling_rate"] = sampling_rate
|
93 |
+
batch["target_text"] = batch["sentence"]
|
94 |
+
batch["speech"] = librosa.resample(np.asarray(batch["speech"]), sampling_rate, 16_000)
|
95 |
+
batch["sampling_rate"] = 16_000
|
96 |
+
return batch
|
97 |
+
|
98 |
+
test= test.map(speech_file_to_array_fn)
|
99 |
+
|
100 |
+
# Preprocessing the datasets.
|
101 |
+
# We need to read the audio files as arrays
|
102 |
+
def evaluate(batch):
|
103 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
104 |
+
with torch.no_grad():
|
105 |
+
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
106 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
107 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids, group_tokens=False)
|
108 |
+
# we do not want to group tokens when computing the metrics
|
109 |
+
return batch
|
110 |
+
|
111 |
+
result = test.map(evaluate, batched=True, batch_size=32)
|
112 |
+
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["text"])))
|
113 |
+
```
|
114 |
+
|
115 |
+
Link to eval notebook : https://colab.research.google.com/drive/1nZRTgKfxCD9cvy90wikTHkg2il3zgcqW#scrollTo=cXWFbhb0d7DT
|
.ipynb_checkpoints/vocab-checkpoint.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"ँ": 1, "ं": 2, "ः": 3, "अ": 4, "आ": 5, "इ": 6, "ई": 7, "उ": 8, "ऊ": 9, "ऋ": 10, "ऍ": 11, "ए": 12, "ऐ": 13, "ऑ": 14, "ओ": 15, "औ": 16, "क": 17, "ख": 18, "ग": 19, "घ": 20, "च": 21, "छ": 22, "ज": 23, "झ": 24, "ञ": 25, "ट": 26, "ठ": 27, "ड": 28, "ढ": 29, "ण": 30, "त": 31, "थ": 32, "द": 33, "ध": 34, "न": 35, "प": 36, "फ": 37, "ब": 38, "भ": 39, "म": 40, "य": 41, "र": 42, "ल": 43, "ळ": 44, "व": 45, "श": 46, "ष": 47, "स": 48, "ह": 49, "़": 50, "ा": 51, "ि": 52, "ी": 53, "ु": 54, "ू": 55, "ृ": 56, "ॅ": 57, "े": 58, "ै": 59, "ॉ": 60, "ो": 61, "ौ": 62, "्": 63, "क़": 64, "ख़": 65, "ग़": 66, "ज़": 67, "ड़": 68, "ढ़": 69, "फ़": 70, "ॠ": 71, "|": 0, "[UNK]": 72, "[PAD]": 73}
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"activation_dropout": 0.1,
|
4 |
"apply_spec_augment": true,
|
5 |
"architectures": [
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "/workspace/output_models/hi-mr/wav2vec2-large-xlsr-hindi-marathi-3/pretrained/checkpoint-6200",
|
3 |
"activation_dropout": 0.1,
|
4 |
"apply_spec_augment": true,
|
5 |
"architectures": [
|
optimizer.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2490683911
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b23ed37c63cbd526a091960074331c9fbfd62f9d565429c9b93a7c0eb52f53cf
|
3 |
size 2490683911
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:93144d21b0411a36226c50063dbe960dcf87724fd5d564a255d8440ca7775038
|
3 |
+
size 1262237208
|
scheduler.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 623
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbe28cde8077f5499e53dba7300dfa7447b2a12524fef45b273ea4b6f7b628dc
|
3 |
size 623
|
trainer_state.json
CHANGED
@@ -1,1016 +1,296 @@
|
|
1 |
{
|
2 |
-
"best_metric": 0.
|
3 |
-
"best_model_checkpoint": "/workspace/output_models/hi-mr/wav2vec2-large-xlsr-hindi-marathi-3/checkpoint-
|
4 |
-
"epoch":
|
5 |
-
"global_step":
|
6 |
"is_hyper_param_search": false,
|
7 |
"is_local_process_zero": true,
|
8 |
"is_world_process_zero": true,
|
9 |
"log_history": [
|
10 |
{
|
11 |
"epoch": 0.16,
|
12 |
-
"learning_rate": 6.
|
13 |
-
"loss":
|
14 |
"step": 100
|
15 |
},
|
16 |
{
|
17 |
"epoch": 0.32,
|
18 |
-
"learning_rate":
|
19 |
-
"loss":
|
20 |
"step": 200
|
21 |
},
|
22 |
{
|
23 |
"epoch": 0.32,
|
24 |
-
"eval_loss":
|
25 |
-
"eval_runtime":
|
26 |
-
"eval_samples_per_second":
|
27 |
-
"eval_wer":
|
28 |
"step": 200
|
29 |
},
|
30 |
{
|
31 |
"epoch": 0.48,
|
32 |
-
"learning_rate":
|
33 |
-
"loss":
|
34 |
"step": 300
|
35 |
},
|
36 |
{
|
37 |
-
"epoch": 0.
|
38 |
-
"learning_rate":
|
39 |
-
"loss":
|
40 |
"step": 400
|
41 |
},
|
42 |
{
|
43 |
-
"epoch": 0.
|
44 |
-
"eval_loss":
|
45 |
-
"eval_runtime":
|
46 |
-
"eval_samples_per_second":
|
47 |
-
"eval_wer":
|
48 |
"step": 400
|
49 |
},
|
50 |
{
|
51 |
-
"epoch": 0.
|
52 |
-
"learning_rate":
|
53 |
-
"loss":
|
54 |
"step": 500
|
55 |
},
|
56 |
{
|
57 |
-
"epoch": 0.
|
58 |
-
"learning_rate":
|
59 |
-
"loss": 0.
|
60 |
"step": 600
|
61 |
},
|
62 |
{
|
63 |
-
"epoch": 0.
|
64 |
-
"eval_loss": 0.
|
65 |
-
"eval_runtime":
|
66 |
-
"eval_samples_per_second":
|
67 |
-
"eval_wer": 0.
|
68 |
"step": 600
|
69 |
},
|
70 |
{
|
71 |
-
"epoch": 1.
|
72 |
-
"learning_rate":
|
73 |
-
"loss": 0.
|
74 |
"step": 700
|
75 |
},
|
76 |
{
|
77 |
-
"epoch": 1.
|
78 |
-
"learning_rate":
|
79 |
-
"loss": 0.
|
80 |
"step": 800
|
81 |
},
|
82 |
{
|
83 |
-
"epoch": 1.
|
84 |
-
"eval_loss": 0.
|
85 |
-
"eval_runtime":
|
86 |
-
"eval_samples_per_second":
|
87 |
-
"eval_wer": 0.
|
88 |
"step": 800
|
89 |
},
|
90 |
{
|
91 |
-
"epoch": 1.
|
92 |
-
"learning_rate":
|
93 |
-
"loss": 0.
|
94 |
"step": 900
|
95 |
},
|
96 |
{
|
97 |
-
"epoch": 1.
|
98 |
-
"learning_rate":
|
99 |
-
"loss": 0.
|
100 |
"step": 1000
|
101 |
},
|
102 |
{
|
103 |
-
"epoch": 1.
|
104 |
-
"eval_loss": 0.
|
105 |
-
"eval_runtime":
|
106 |
-
"eval_samples_per_second":
|
107 |
-
"eval_wer": 0.
|
108 |
"step": 1000
|
109 |
},
|
110 |
{
|
111 |
-
"epoch": 1.
|
112 |
-
"learning_rate":
|
113 |
-
"loss": 0.
|
114 |
"step": 1100
|
115 |
},
|
116 |
{
|
117 |
-
"epoch": 1.
|
118 |
-
"learning_rate":
|
119 |
-
"loss": 0.
|
120 |
"step": 1200
|
121 |
},
|
122 |
{
|
123 |
-
"epoch": 1.
|
124 |
-
"eval_loss": 0.
|
125 |
-
"eval_runtime":
|
126 |
-
"eval_samples_per_second":
|
127 |
-
"eval_wer": 0.
|
128 |
"step": 1200
|
129 |
},
|
130 |
{
|
131 |
-
"epoch": 2.
|
132 |
-
"learning_rate":
|
133 |
-
"loss": 0.
|
134 |
"step": 1300
|
135 |
},
|
136 |
{
|
137 |
-
"epoch": 2.
|
138 |
-
"learning_rate":
|
139 |
-
"loss": 0.
|
140 |
"step": 1400
|
141 |
},
|
142 |
{
|
143 |
-
"epoch": 2.
|
144 |
-
"eval_loss": 0.
|
145 |
-
"eval_runtime":
|
146 |
-
"eval_samples_per_second":
|
147 |
-
"eval_wer": 0.
|
148 |
"step": 1400
|
149 |
},
|
150 |
{
|
151 |
-
"epoch": 2.
|
152 |
-
"learning_rate":
|
153 |
-
"loss": 0.
|
154 |
"step": 1500
|
155 |
},
|
156 |
{
|
157 |
-
"epoch": 2.
|
158 |
-
"learning_rate":
|
159 |
-
"loss": 0.
|
160 |
"step": 1600
|
161 |
},
|
162 |
{
|
163 |
-
"epoch": 2.
|
164 |
-
"eval_loss": 0.
|
165 |
-
"eval_runtime":
|
166 |
-
"eval_samples_per_second":
|
167 |
-
"eval_wer": 0.
|
168 |
"step": 1600
|
169 |
},
|
170 |
{
|
171 |
-
"epoch": 2.
|
172 |
-
"learning_rate":
|
173 |
-
"loss": 0.
|
174 |
"step": 1700
|
175 |
},
|
176 |
{
|
177 |
-
"epoch": 2.
|
178 |
-
"learning_rate":
|
179 |
-
"loss": 0.
|
180 |
"step": 1800
|
181 |
},
|
182 |
{
|
183 |
-
"epoch": 2.
|
184 |
-
"eval_loss": 0.
|
185 |
-
"eval_runtime":
|
186 |
-
"eval_samples_per_second":
|
187 |
-
"eval_wer": 0.
|
188 |
"step": 1800
|
189 |
},
|
190 |
{
|
191 |
-
"epoch": 3.
|
192 |
-
"learning_rate":
|
193 |
-
"loss": 0.
|
194 |
"step": 1900
|
195 |
},
|
196 |
{
|
197 |
-
"epoch": 3.
|
198 |
-
"learning_rate":
|
199 |
-
"loss": 0.
|
200 |
"step": 2000
|
201 |
},
|
202 |
{
|
203 |
-
"epoch": 3.
|
204 |
-
"eval_loss": 0.
|
205 |
-
"eval_runtime":
|
206 |
-
"eval_samples_per_second":
|
207 |
-
"eval_wer": 0.
|
208 |
"step": 2000
|
209 |
},
|
210 |
{
|
211 |
-
"epoch": 3.
|
212 |
-
"learning_rate":
|
213 |
-
"loss": 0.
|
214 |
"step": 2100
|
215 |
},
|
216 |
{
|
217 |
-
"epoch": 3.
|
218 |
-
"learning_rate":
|
219 |
-
"loss": 0.
|
220 |
"step": 2200
|
221 |
},
|
222 |
{
|
223 |
-
"epoch": 3.
|
224 |
-
"eval_loss": 0.
|
225 |
-
"eval_runtime":
|
226 |
-
"eval_samples_per_second":
|
227 |
-
"eval_wer": 0.
|
228 |
"step": 2200
|
229 |
},
|
230 |
{
|
231 |
-
"epoch": 3.
|
232 |
-
"learning_rate":
|
233 |
-
"loss": 0.
|
234 |
"step": 2300
|
235 |
},
|
236 |
{
|
237 |
-
"epoch": 3.
|
238 |
-
"learning_rate":
|
239 |
-
"loss": 0.
|
240 |
"step": 2400
|
241 |
},
|
242 |
{
|
243 |
-
"epoch": 3.
|
244 |
-
"eval_loss": 0.
|
245 |
-
"eval_runtime":
|
246 |
-
"eval_samples_per_second":
|
247 |
-
"eval_wer": 0.
|
248 |
"step": 2400
|
249 |
},
|
250 |
{
|
251 |
-
"epoch":
|
252 |
-
"learning_rate":
|
253 |
-
"loss": 0.
|
254 |
"step": 2500
|
255 |
},
|
256 |
{
|
257 |
-
"epoch": 4.
|
258 |
-
"learning_rate":
|
259 |
-
"loss": 0.
|
260 |
"step": 2600
|
261 |
},
|
262 |
{
|
263 |
-
"epoch": 4.
|
264 |
-
"eval_loss": 0.
|
265 |
-
"eval_runtime":
|
266 |
-
"eval_samples_per_second":
|
267 |
-
"eval_wer": 0.
|
268 |
"step": 2600
|
269 |
},
|
270 |
{
|
271 |
-
"epoch": 4.
|
272 |
-
"learning_rate":
|
273 |
-
"loss": 0.
|
274 |
"step": 2700
|
275 |
},
|
276 |
{
|
277 |
-
"epoch": 4.
|
278 |
-
"learning_rate":
|
279 |
-
"loss": 0.
|
280 |
"step": 2800
|
281 |
},
|
282 |
{
|
283 |
-
"epoch": 4.
|
284 |
-
"eval_loss": 0.
|
285 |
-
"eval_runtime":
|
286 |
-
"eval_samples_per_second":
|
287 |
-
"eval_wer": 0.
|
288 |
"step": 2800
|
289 |
-
},
|
290 |
-
{
|
291 |
-
"epoch": 4.64,
|
292 |
-
"learning_rate": 0.0002598360655737705,
|
293 |
-
"loss": 0.2262,
|
294 |
-
"step": 2900
|
295 |
-
},
|
296 |
-
{
|
297 |
-
"epoch": 4.8,
|
298 |
-
"learning_rate": 0.00025819672131147537,
|
299 |
-
"loss": 0.2249,
|
300 |
-
"step": 3000
|
301 |
-
},
|
302 |
-
{
|
303 |
-
"epoch": 4.8,
|
304 |
-
"eval_loss": 0.371224969625473,
|
305 |
-
"eval_runtime": 83.7191,
|
306 |
-
"eval_samples_per_second": 23.889,
|
307 |
-
"eval_wer": 0.285913753289297,
|
308 |
-
"step": 3000
|
309 |
-
},
|
310 |
-
{
|
311 |
-
"epoch": 4.96,
|
312 |
-
"learning_rate": 0.00025655737704918027,
|
313 |
-
"loss": 0.2232,
|
314 |
-
"step": 3100
|
315 |
-
},
|
316 |
-
{
|
317 |
-
"epoch": 5.12,
|
318 |
-
"learning_rate": 0.0002549180327868852,
|
319 |
-
"loss": 0.2055,
|
320 |
-
"step": 3200
|
321 |
-
},
|
322 |
-
{
|
323 |
-
"epoch": 5.12,
|
324 |
-
"eval_loss": 0.36438417434692383,
|
325 |
-
"eval_runtime": 82.4039,
|
326 |
-
"eval_samples_per_second": 24.271,
|
327 |
-
"eval_wer": 0.28048976961495087,
|
328 |
-
"step": 3200
|
329 |
-
},
|
330 |
-
{
|
331 |
-
"epoch": 5.28,
|
332 |
-
"learning_rate": 0.00025327868852459016,
|
333 |
-
"loss": 0.1999,
|
334 |
-
"step": 3300
|
335 |
-
},
|
336 |
-
{
|
337 |
-
"epoch": 5.44,
|
338 |
-
"learning_rate": 0.00025163934426229506,
|
339 |
-
"loss": 0.1969,
|
340 |
-
"step": 3400
|
341 |
-
},
|
342 |
-
{
|
343 |
-
"epoch": 5.44,
|
344 |
-
"eval_loss": 0.371999055147171,
|
345 |
-
"eval_runtime": 83.0961,
|
346 |
-
"eval_samples_per_second": 24.069,
|
347 |
-
"eval_wer": 0.28204715106600076,
|
348 |
-
"step": 3400
|
349 |
-
},
|
350 |
-
{
|
351 |
-
"epoch": 5.6,
|
352 |
-
"learning_rate": 0.00025,
|
353 |
-
"loss": 0.1949,
|
354 |
-
"step": 3500
|
355 |
-
},
|
356 |
-
{
|
357 |
-
"epoch": 5.76,
|
358 |
-
"learning_rate": 0.0002483606557377049,
|
359 |
-
"loss": 0.1945,
|
360 |
-
"step": 3600
|
361 |
-
},
|
362 |
-
{
|
363 |
-
"epoch": 5.76,
|
364 |
-
"eval_loss": 0.3662562370300293,
|
365 |
-
"eval_runtime": 82.7035,
|
366 |
-
"eval_samples_per_second": 24.183,
|
367 |
-
"eval_wer": 0.28435637183824714,
|
368 |
-
"step": 3600
|
369 |
-
},
|
370 |
-
{
|
371 |
-
"epoch": 5.92,
|
372 |
-
"learning_rate": 0.00024672131147540985,
|
373 |
-
"loss": 0.191,
|
374 |
-
"step": 3700
|
375 |
-
},
|
376 |
-
{
|
377 |
-
"epoch": 6.08,
|
378 |
-
"learning_rate": 0.00024508196721311474,
|
379 |
-
"loss": 0.1689,
|
380 |
-
"step": 3800
|
381 |
-
},
|
382 |
-
{
|
383 |
-
"epoch": 6.08,
|
384 |
-
"eval_loss": 0.3731316328048706,
|
385 |
-
"eval_runtime": 83.1862,
|
386 |
-
"eval_samples_per_second": 24.042,
|
387 |
-
"eval_wer": 0.2787712797379303,
|
388 |
-
"step": 3800
|
389 |
-
},
|
390 |
-
{
|
391 |
-
"epoch": 6.24,
|
392 |
-
"learning_rate": 0.00024344262295081966,
|
393 |
-
"loss": 0.1631,
|
394 |
-
"step": 3900
|
395 |
-
},
|
396 |
-
{
|
397 |
-
"epoch": 6.4,
|
398 |
-
"learning_rate": 0.00024180327868852458,
|
399 |
-
"loss": 0.1568,
|
400 |
-
"step": 4000
|
401 |
-
},
|
402 |
-
{
|
403 |
-
"epoch": 6.4,
|
404 |
-
"eval_loss": 0.37625598907470703,
|
405 |
-
"eval_runtime": 83.6104,
|
406 |
-
"eval_samples_per_second": 23.92,
|
407 |
-
"eval_wer": 0.2781805488427045,
|
408 |
-
"step": 4000
|
409 |
-
},
|
410 |
-
{
|
411 |
-
"epoch": 6.56,
|
412 |
-
"learning_rate": 0.00024016393442622948,
|
413 |
-
"loss": 0.1665,
|
414 |
-
"step": 4100
|
415 |
-
},
|
416 |
-
{
|
417 |
-
"epoch": 6.72,
|
418 |
-
"learning_rate": 0.0002385245901639344,
|
419 |
-
"loss": 0.1581,
|
420 |
-
"step": 4200
|
421 |
-
},
|
422 |
-
{
|
423 |
-
"epoch": 6.72,
|
424 |
-
"eval_loss": 0.3642520606517792,
|
425 |
-
"eval_runtime": 83.3706,
|
426 |
-
"eval_samples_per_second": 23.989,
|
427 |
-
"eval_wer": 0.2725954567423876,
|
428 |
-
"step": 4200
|
429 |
-
},
|
430 |
-
{
|
431 |
-
"epoch": 6.88,
|
432 |
-
"learning_rate": 0.00023688524590163932,
|
433 |
-
"loss": 0.1517,
|
434 |
-
"step": 4300
|
435 |
-
},
|
436 |
-
{
|
437 |
-
"epoch": 7.04,
|
438 |
-
"learning_rate": 0.00023524590163934424,
|
439 |
-
"loss": 0.1529,
|
440 |
-
"step": 4400
|
441 |
-
},
|
442 |
-
{
|
443 |
-
"epoch": 7.04,
|
444 |
-
"eval_loss": 0.3819567859172821,
|
445 |
-
"eval_runtime": 83.7194,
|
446 |
-
"eval_samples_per_second": 23.889,
|
447 |
-
"eval_wer": 0.27238064550776003,
|
448 |
-
"step": 4400
|
449 |
-
},
|
450 |
-
{
|
451 |
-
"epoch": 7.2,
|
452 |
-
"learning_rate": 0.00023360655737704916,
|
453 |
-
"loss": 0.1344,
|
454 |
-
"step": 4500
|
455 |
-
},
|
456 |
-
{
|
457 |
-
"epoch": 7.36,
|
458 |
-
"learning_rate": 0.00023196721311475406,
|
459 |
-
"loss": 0.1363,
|
460 |
-
"step": 4600
|
461 |
-
},
|
462 |
-
{
|
463 |
-
"epoch": 7.36,
|
464 |
-
"eval_loss": 0.38544762134552,
|
465 |
-
"eval_runtime": 83.3319,
|
466 |
-
"eval_samples_per_second": 24.0,
|
467 |
-
"eval_wer": 0.2733472960635841,
|
468 |
-
"step": 4600
|
469 |
-
},
|
470 |
-
{
|
471 |
-
"epoch": 7.52,
|
472 |
-
"learning_rate": 0.00023032786885245898,
|
473 |
-
"loss": 0.1276,
|
474 |
-
"step": 4700
|
475 |
-
},
|
476 |
-
{
|
477 |
-
"epoch": 7.68,
|
478 |
-
"learning_rate": 0.0002286885245901639,
|
479 |
-
"loss": 0.1252,
|
480 |
-
"step": 4800
|
481 |
-
},
|
482 |
-
{
|
483 |
-
"epoch": 7.68,
|
484 |
-
"eval_loss": 0.37892764806747437,
|
485 |
-
"eval_runtime": 83.6054,
|
486 |
-
"eval_samples_per_second": 23.922,
|
487 |
-
"eval_wer": 0.2722732398904463,
|
488 |
-
"step": 4800
|
489 |
-
},
|
490 |
-
{
|
491 |
-
"epoch": 7.84,
|
492 |
-
"learning_rate": 0.00022704918032786882,
|
493 |
-
"loss": 0.1328,
|
494 |
-
"step": 4900
|
495 |
-
},
|
496 |
-
{
|
497 |
-
"epoch": 8.0,
|
498 |
-
"learning_rate": 0.00022540983606557374,
|
499 |
-
"loss": 0.1327,
|
500 |
-
"step": 5000
|
501 |
-
},
|
502 |
-
{
|
503 |
-
"epoch": 8.0,
|
504 |
-
"eval_loss": 0.3974834084510803,
|
505 |
-
"eval_runtime": 83.8203,
|
506 |
-
"eval_samples_per_second": 23.861,
|
507 |
-
"eval_wer": 0.2739380269588099,
|
508 |
-
"step": 5000
|
509 |
-
},
|
510 |
-
{
|
511 |
-
"epoch": 8.16,
|
512 |
-
"learning_rate": 0.0002237704918032787,
|
513 |
-
"loss": 0.1176,
|
514 |
-
"step": 5100
|
515 |
-
},
|
516 |
-
{
|
517 |
-
"epoch": 8.32,
|
518 |
-
"learning_rate": 0.0002221311475409836,
|
519 |
-
"loss": 0.1157,
|
520 |
-
"step": 5200
|
521 |
-
},
|
522 |
-
{
|
523 |
-
"epoch": 8.32,
|
524 |
-
"eval_loss": 0.3960728347301483,
|
525 |
-
"eval_runtime": 84.4842,
|
526 |
-
"eval_samples_per_second": 23.673,
|
527 |
-
"eval_wer": 0.2711991837173084,
|
528 |
-
"step": 5200
|
529 |
-
},
|
530 |
-
{
|
531 |
-
"epoch": 8.48,
|
532 |
-
"learning_rate": 0.0002204918032786885,
|
533 |
-
"loss": 0.1151,
|
534 |
-
"step": 5300
|
535 |
-
},
|
536 |
-
{
|
537 |
-
"epoch": 8.64,
|
538 |
-
"learning_rate": 0.00021885245901639343,
|
539 |
-
"loss": 0.1173,
|
540 |
-
"step": 5400
|
541 |
-
},
|
542 |
-
{
|
543 |
-
"epoch": 8.64,
|
544 |
-
"eval_loss": 0.40709516406059265,
|
545 |
-
"eval_runtime": 82.9277,
|
546 |
-
"eval_samples_per_second": 24.117,
|
547 |
-
"eval_wer": 0.2727565651683583,
|
548 |
-
"step": 5400
|
549 |
-
},
|
550 |
-
{
|
551 |
-
"epoch": 8.8,
|
552 |
-
"learning_rate": 0.00021721311475409835,
|
553 |
-
"loss": 0.1143,
|
554 |
-
"step": 5500
|
555 |
-
},
|
556 |
-
{
|
557 |
-
"epoch": 8.96,
|
558 |
-
"learning_rate": 0.00021557377049180327,
|
559 |
-
"loss": 0.1166,
|
560 |
-
"step": 5600
|
561 |
-
},
|
562 |
-
{
|
563 |
-
"epoch": 8.96,
|
564 |
-
"eval_loss": 0.41475972533226013,
|
565 |
-
"eval_runtime": 84.4573,
|
566 |
-
"eval_samples_per_second": 23.681,
|
567 |
-
"eval_wer": 0.2736695129155255,
|
568 |
-
"step": 5600
|
569 |
-
},
|
570 |
-
{
|
571 |
-
"epoch": 9.12,
|
572 |
-
"learning_rate": 0.0002139344262295082,
|
573 |
-
"loss": 0.1028,
|
574 |
-
"step": 5700
|
575 |
-
},
|
576 |
-
{
|
577 |
-
"epoch": 9.28,
|
578 |
-
"learning_rate": 0.00021229508196721309,
|
579 |
-
"loss": 0.1026,
|
580 |
-
"step": 5800
|
581 |
-
},
|
582 |
-
{
|
583 |
-
"epoch": 9.28,
|
584 |
-
"eval_loss": 0.4114053547382355,
|
585 |
-
"eval_runtime": 83.5505,
|
586 |
-
"eval_samples_per_second": 23.938,
|
587 |
-
"eval_wer": 0.2681381236238655,
|
588 |
-
"step": 5800
|
589 |
-
},
|
590 |
-
{
|
591 |
-
"epoch": 9.44,
|
592 |
-
"learning_rate": 0.000210655737704918,
|
593 |
-
"loss": 0.1004,
|
594 |
-
"step": 5900
|
595 |
-
},
|
596 |
-
{
|
597 |
-
"epoch": 9.6,
|
598 |
-
"learning_rate": 0.00020901639344262293,
|
599 |
-
"loss": 0.1121,
|
600 |
-
"step": 6000
|
601 |
-
},
|
602 |
-
{
|
603 |
-
"epoch": 9.6,
|
604 |
-
"eval_loss": 0.4229777753353119,
|
605 |
-
"eval_runtime": 83.5437,
|
606 |
-
"eval_samples_per_second": 23.94,
|
607 |
-
"eval_wer": 0.27060845282208257,
|
608 |
-
"step": 6000
|
609 |
-
},
|
610 |
-
{
|
611 |
-
"epoch": 9.76,
|
612 |
-
"learning_rate": 0.00020737704918032785,
|
613 |
-
"loss": 0.1026,
|
614 |
-
"step": 6100
|
615 |
-
},
|
616 |
-
{
|
617 |
-
"epoch": 9.92,
|
618 |
-
"learning_rate": 0.00020573770491803277,
|
619 |
-
"loss": 0.1041,
|
620 |
-
"step": 6200
|
621 |
-
},
|
622 |
-
{
|
623 |
-
"epoch": 9.92,
|
624 |
-
"eval_loss": 0.40711304545402527,
|
625 |
-
"eval_runtime": 83.5856,
|
626 |
-
"eval_samples_per_second": 23.928,
|
627 |
-
"eval_wer": 0.27017883035282747,
|
628 |
-
"step": 6200
|
629 |
-
},
|
630 |
-
{
|
631 |
-
"epoch": 10.08,
|
632 |
-
"learning_rate": 0.0002040983606557377,
|
633 |
-
"loss": 0.0877,
|
634 |
-
"step": 6300
|
635 |
-
},
|
636 |
-
{
|
637 |
-
"epoch": 10.24,
|
638 |
-
"learning_rate": 0.0002024590163934426,
|
639 |
-
"loss": 0.088,
|
640 |
-
"step": 6400
|
641 |
-
},
|
642 |
-
{
|
643 |
-
"epoch": 10.24,
|
644 |
-
"eval_loss": 0.437641978263855,
|
645 |
-
"eval_runtime": 83.2287,
|
646 |
-
"eval_samples_per_second": 24.03,
|
647 |
-
"eval_wer": 0.26797701519789485,
|
648 |
-
"step": 6400
|
649 |
-
},
|
650 |
-
{
|
651 |
-
"epoch": 10.4,
|
652 |
-
"learning_rate": 0.0002008196721311475,
|
653 |
-
"loss": 0.0941,
|
654 |
-
"step": 6500
|
655 |
-
},
|
656 |
-
{
|
657 |
-
"epoch": 10.56,
|
658 |
-
"learning_rate": 0.00019918032786885243,
|
659 |
-
"loss": 0.0884,
|
660 |
-
"step": 6600
|
661 |
-
},
|
662 |
-
{
|
663 |
-
"epoch": 10.56,
|
664 |
-
"eval_loss": 0.4451253414154053,
|
665 |
-
"eval_runtime": 84.0696,
|
666 |
-
"eval_samples_per_second": 23.79,
|
667 |
-
"eval_wer": 0.26529187476505023,
|
668 |
-
"step": 6600
|
669 |
-
},
|
670 |
-
{
|
671 |
-
"epoch": 10.72,
|
672 |
-
"learning_rate": 0.00019754098360655735,
|
673 |
-
"loss": 0.0867,
|
674 |
-
"step": 6700
|
675 |
-
},
|
676 |
-
{
|
677 |
-
"epoch": 10.88,
|
678 |
-
"learning_rate": 0.00019590163934426227,
|
679 |
-
"loss": 0.0978,
|
680 |
-
"step": 6800
|
681 |
-
},
|
682 |
-
{
|
683 |
-
"epoch": 10.88,
|
684 |
-
"eval_loss": 0.4322107136249542,
|
685 |
-
"eval_runtime": 83.5762,
|
686 |
-
"eval_samples_per_second": 23.93,
|
687 |
-
"eval_wer": 0.26475484667848126,
|
688 |
-
"step": 6800
|
689 |
-
},
|
690 |
-
{
|
691 |
-
"epoch": 11.04,
|
692 |
-
"learning_rate": 0.00019426229508196722,
|
693 |
-
"loss": 0.0834,
|
694 |
-
"step": 6900
|
695 |
-
},
|
696 |
-
{
|
697 |
-
"epoch": 11.2,
|
698 |
-
"learning_rate": 0.00019262295081967214,
|
699 |
-
"loss": 0.0785,
|
700 |
-
"step": 7000
|
701 |
-
},
|
702 |
-
{
|
703 |
-
"epoch": 11.2,
|
704 |
-
"eval_loss": 0.4244215190410614,
|
705 |
-
"eval_runtime": 83.288,
|
706 |
-
"eval_samples_per_second": 24.013,
|
707 |
-
"eval_wer": 0.25970678266473335,
|
708 |
-
"step": 7000
|
709 |
-
},
|
710 |
-
{
|
711 |
-
"epoch": 11.36,
|
712 |
-
"learning_rate": 0.00019098360655737704,
|
713 |
-
"loss": 0.0723,
|
714 |
-
"step": 7100
|
715 |
-
},
|
716 |
-
{
|
717 |
-
"epoch": 11.52,
|
718 |
-
"learning_rate": 0.00018934426229508196,
|
719 |
-
"loss": 0.0771,
|
720 |
-
"step": 7200
|
721 |
-
},
|
722 |
-
{
|
723 |
-
"epoch": 11.52,
|
724 |
-
"eval_loss": 0.43486374616622925,
|
725 |
-
"eval_runtime": 83.8141,
|
726 |
-
"eval_samples_per_second": 23.862,
|
727 |
-
"eval_wer": 0.25755867031845764,
|
728 |
-
"step": 7200
|
729 |
-
},
|
730 |
-
{
|
731 |
-
"epoch": 11.68,
|
732 |
-
"learning_rate": 0.00018770491803278688,
|
733 |
-
"loss": 0.0787,
|
734 |
-
"step": 7300
|
735 |
-
},
|
736 |
-
{
|
737 |
-
"epoch": 11.84,
|
738 |
-
"learning_rate": 0.0001860655737704918,
|
739 |
-
"loss": 0.0809,
|
740 |
-
"step": 7400
|
741 |
-
},
|
742 |
-
{
|
743 |
-
"epoch": 11.84,
|
744 |
-
"eval_loss": 0.44311779737472534,
|
745 |
-
"eval_runtime": 85.6363,
|
746 |
-
"eval_samples_per_second": 23.355,
|
747 |
-
"eval_wer": 0.2628215455668331,
|
748 |
-
"step": 7400
|
749 |
-
},
|
750 |
-
{
|
751 |
-
"epoch": 12.0,
|
752 |
-
"learning_rate": 0.00018442622950819672,
|
753 |
-
"loss": 0.0778,
|
754 |
-
"step": 7500
|
755 |
-
},
|
756 |
-
{
|
757 |
-
"epoch": 12.16,
|
758 |
-
"learning_rate": 0.00018278688524590162,
|
759 |
-
"loss": 0.071,
|
760 |
-
"step": 7600
|
761 |
-
},
|
762 |
-
{
|
763 |
-
"epoch": 12.16,
|
764 |
-
"eval_loss": 0.47199195623397827,
|
765 |
-
"eval_runtime": 82.9761,
|
766 |
-
"eval_samples_per_second": 24.103,
|
767 |
-
"eval_wer": 0.2588475377262231,
|
768 |
-
"step": 7600
|
769 |
-
},
|
770 |
-
{
|
771 |
-
"epoch": 12.32,
|
772 |
-
"learning_rate": 0.00018114754098360654,
|
773 |
-
"loss": 0.074,
|
774 |
-
"step": 7700
|
775 |
-
},
|
776 |
-
{
|
777 |
-
"epoch": 12.48,
|
778 |
-
"learning_rate": 0.00017950819672131146,
|
779 |
-
"loss": 0.0677,
|
780 |
-
"step": 7800
|
781 |
-
},
|
782 |
-
{
|
783 |
-
"epoch": 12.48,
|
784 |
-
"eval_loss": 0.4387381672859192,
|
785 |
-
"eval_runtime": 83.0897,
|
786 |
-
"eval_samples_per_second": 24.07,
|
787 |
-
"eval_wer": 0.259867891090704,
|
788 |
-
"step": 7800
|
789 |
-
},
|
790 |
-
{
|
791 |
-
"epoch": 12.64,
|
792 |
-
"learning_rate": 0.00017786885245901638,
|
793 |
-
"loss": 0.0703,
|
794 |
-
"step": 7900
|
795 |
-
},
|
796 |
-
{
|
797 |
-
"epoch": 12.8,
|
798 |
-
"learning_rate": 0.0001762295081967213,
|
799 |
-
"loss": 0.0765,
|
800 |
-
"step": 8000
|
801 |
-
},
|
802 |
-
{
|
803 |
-
"epoch": 12.8,
|
804 |
-
"eval_loss": 0.4592679738998413,
|
805 |
-
"eval_runtime": 84.0398,
|
806 |
-
"eval_samples_per_second": 23.798,
|
807 |
-
"eval_wer": 0.2572364534665163,
|
808 |
-
"step": 8000
|
809 |
-
},
|
810 |
-
{
|
811 |
-
"epoch": 12.96,
|
812 |
-
"learning_rate": 0.0001745901639344262,
|
813 |
-
"loss": 0.0683,
|
814 |
-
"step": 8100
|
815 |
-
},
|
816 |
-
{
|
817 |
-
"epoch": 13.12,
|
818 |
-
"learning_rate": 0.00017295081967213112,
|
819 |
-
"loss": 0.0621,
|
820 |
-
"step": 8200
|
821 |
-
},
|
822 |
-
{
|
823 |
-
"epoch": 13.12,
|
824 |
-
"eval_loss": 0.4588267505168915,
|
825 |
-
"eval_runtime": 82.8224,
|
826 |
-
"eval_samples_per_second": 24.148,
|
827 |
-
"eval_wer": 0.2633585736534021,
|
828 |
-
"step": 8200
|
829 |
-
},
|
830 |
-
{
|
831 |
-
"epoch": 13.28,
|
832 |
-
"learning_rate": 0.00017131147540983604,
|
833 |
-
"loss": 0.065,
|
834 |
-
"step": 8300
|
835 |
-
},
|
836 |
-
{
|
837 |
-
"epoch": 13.44,
|
838 |
-
"learning_rate": 0.00016967213114754096,
|
839 |
-
"loss": 0.067,
|
840 |
-
"step": 8400
|
841 |
-
},
|
842 |
-
{
|
843 |
-
"epoch": 13.44,
|
844 |
-
"eval_loss": 0.4433707296848297,
|
845 |
-
"eval_runtime": 84.8017,
|
846 |
-
"eval_samples_per_second": 23.584,
|
847 |
-
"eval_wer": 0.25922345738682134,
|
848 |
-
"step": 8400
|
849 |
-
},
|
850 |
-
{
|
851 |
-
"epoch": 13.6,
|
852 |
-
"learning_rate": 0.00016803278688524588,
|
853 |
-
"loss": 0.067,
|
854 |
-
"step": 8500
|
855 |
-
},
|
856 |
-
{
|
857 |
-
"epoch": 13.76,
|
858 |
-
"learning_rate": 0.0001663934426229508,
|
859 |
-
"loss": 0.0633,
|
860 |
-
"step": 8600
|
861 |
-
},
|
862 |
-
{
|
863 |
-
"epoch": 13.76,
|
864 |
-
"eval_loss": 0.4525003433227539,
|
865 |
-
"eval_runtime": 82.3869,
|
866 |
-
"eval_samples_per_second": 24.276,
|
867 |
-
"eval_wer": 0.2647011438698244,
|
868 |
-
"step": 8600
|
869 |
-
},
|
870 |
-
{
|
871 |
-
"epoch": 13.92,
|
872 |
-
"learning_rate": 0.00016475409836065575,
|
873 |
-
"loss": 0.0704,
|
874 |
-
"step": 8700
|
875 |
-
},
|
876 |
-
{
|
877 |
-
"epoch": 14.08,
|
878 |
-
"learning_rate": 0.00016311475409836064,
|
879 |
-
"loss": 0.0635,
|
880 |
-
"step": 8800
|
881 |
-
},
|
882 |
-
{
|
883 |
-
"epoch": 14.08,
|
884 |
-
"eval_loss": 0.46746838092803955,
|
885 |
-
"eval_runtime": 82.2147,
|
886 |
-
"eval_samples_per_second": 24.327,
|
887 |
-
"eval_wer": 0.2580419955963697,
|
888 |
-
"step": 8800
|
889 |
-
},
|
890 |
-
{
|
891 |
-
"epoch": 14.24,
|
892 |
-
"learning_rate": 0.00016147540983606556,
|
893 |
-
"loss": 0.0568,
|
894 |
-
"step": 8900
|
895 |
-
},
|
896 |
-
{
|
897 |
-
"epoch": 14.4,
|
898 |
-
"learning_rate": 0.00015983606557377049,
|
899 |
-
"loss": 0.06,
|
900 |
-
"step": 9000
|
901 |
-
},
|
902 |
-
{
|
903 |
-
"epoch": 14.4,
|
904 |
-
"eval_loss": 0.46421578526496887,
|
905 |
-
"eval_runtime": 84.6457,
|
906 |
-
"eval_samples_per_second": 23.628,
|
907 |
-
"eval_wer": 0.25841791525696794,
|
908 |
-
"step": 9000
|
909 |
-
},
|
910 |
-
{
|
911 |
-
"epoch": 14.56,
|
912 |
-
"learning_rate": 0.0001581967213114754,
|
913 |
-
"loss": 0.0588,
|
914 |
-
"step": 9100
|
915 |
-
},
|
916 |
-
{
|
917 |
-
"epoch": 14.72,
|
918 |
-
"learning_rate": 0.00015655737704918033,
|
919 |
-
"loss": 0.0618,
|
920 |
-
"step": 9200
|
921 |
-
},
|
922 |
-
{
|
923 |
-
"epoch": 14.72,
|
924 |
-
"eval_loss": 0.465658038854599,
|
925 |
-
"eval_runtime": 83.6497,
|
926 |
-
"eval_samples_per_second": 23.909,
|
927 |
-
"eval_wer": 0.2606734332205574,
|
928 |
-
"step": 9200
|
929 |
-
},
|
930 |
-
{
|
931 |
-
"epoch": 14.88,
|
932 |
-
"learning_rate": 0.00015491803278688525,
|
933 |
-
"loss": 0.0578,
|
934 |
-
"step": 9300
|
935 |
-
},
|
936 |
-
{
|
937 |
-
"epoch": 15.04,
|
938 |
-
"learning_rate": 0.00015327868852459014,
|
939 |
-
"loss": 0.0562,
|
940 |
-
"step": 9400
|
941 |
-
},
|
942 |
-
{
|
943 |
-
"epoch": 15.04,
|
944 |
-
"eval_loss": 0.4753575325012207,
|
945 |
-
"eval_runtime": 82.0241,
|
946 |
-
"eval_samples_per_second": 24.383,
|
947 |
-
"eval_wer": 0.25831050963965413,
|
948 |
-
"step": 9400
|
949 |
-
},
|
950 |
-
{
|
951 |
-
"epoch": 15.2,
|
952 |
-
"learning_rate": 0.00015163934426229507,
|
953 |
-
"loss": 0.0489,
|
954 |
-
"step": 9500
|
955 |
-
},
|
956 |
-
{
|
957 |
-
"epoch": 15.36,
|
958 |
-
"learning_rate": 0.00015,
|
959 |
-
"loss": 0.0528,
|
960 |
-
"step": 9600
|
961 |
-
},
|
962 |
-
{
|
963 |
-
"epoch": 15.36,
|
964 |
-
"eval_loss": 0.48737889528274536,
|
965 |
-
"eval_runtime": 85.0733,
|
966 |
-
"eval_samples_per_second": 23.509,
|
967 |
-
"eval_wer": 0.2623382202889211,
|
968 |
-
"step": 9600
|
969 |
-
},
|
970 |
-
{
|
971 |
-
"epoch": 15.52,
|
972 |
-
"learning_rate": 0.0001483606557377049,
|
973 |
-
"loss": 0.0522,
|
974 |
-
"step": 9700
|
975 |
-
},
|
976 |
-
{
|
977 |
-
"epoch": 15.68,
|
978 |
-
"learning_rate": 0.00014672131147540983,
|
979 |
-
"loss": 0.0528,
|
980 |
-
"step": 9800
|
981 |
-
},
|
982 |
-
{
|
983 |
-
"epoch": 15.68,
|
984 |
-
"eval_loss": 0.47928667068481445,
|
985 |
-
"eval_runtime": 84.0501,
|
986 |
-
"eval_samples_per_second": 23.795,
|
987 |
-
"eval_wer": 0.26206970624563664,
|
988 |
-
"step": 9800
|
989 |
-
},
|
990 |
-
{
|
991 |
-
"epoch": 15.84,
|
992 |
-
"learning_rate": 0.00014508196721311472,
|
993 |
-
"loss": 0.0503,
|
994 |
-
"step": 9900
|
995 |
-
},
|
996 |
-
{
|
997 |
-
"epoch": 16.0,
|
998 |
-
"learning_rate": 0.00014344262295081964,
|
999 |
-
"loss": 0.0507,
|
1000 |
-
"step": 10000
|
1001 |
-
},
|
1002 |
-
{
|
1003 |
-
"epoch": 16.0,
|
1004 |
-
"eval_loss": 0.46980950236320496,
|
1005 |
-
"eval_runtime": 82.8709,
|
1006 |
-
"eval_samples_per_second": 24.134,
|
1007 |
-
"eval_wer": 0.24944954621126686,
|
1008 |
-
"step": 10000
|
1009 |
}
|
1010 |
],
|
1011 |
-
"max_steps":
|
1012 |
-
"num_train_epochs":
|
1013 |
-
"total_flos":
|
1014 |
"trial_name": null,
|
1015 |
"trial_params": null
|
1016 |
}
|
|
|
1 |
{
|
2 |
+
"best_metric": 0.24131617493199414,
|
3 |
+
"best_model_checkpoint": "/workspace/output_models/hi-mr/wav2vec2-large-xlsr-hindi-marathi-3/checkpoint-2800",
|
4 |
+
"epoch": 4.444444444444445,
|
5 |
+
"global_step": 2800,
|
6 |
"is_hyper_param_search": false,
|
7 |
"is_local_process_zero": true,
|
8 |
"is_world_process_zero": true,
|
9 |
"log_history": [
|
10 |
{
|
11 |
"epoch": 0.16,
|
12 |
+
"learning_rate": 6.666666666666667e-06,
|
13 |
+
"loss": 1.1154,
|
14 |
"step": 100
|
15 |
},
|
16 |
{
|
17 |
"epoch": 0.32,
|
18 |
+
"learning_rate": 1.3333333333333333e-05,
|
19 |
+
"loss": 0.252,
|
20 |
"step": 200
|
21 |
},
|
22 |
{
|
23 |
"epoch": 0.32,
|
24 |
+
"eval_loss": 0.49659740924835205,
|
25 |
+
"eval_runtime": 153.7026,
|
26 |
+
"eval_samples_per_second": 26.851,
|
27 |
+
"eval_wer": 0.27688847039129527,
|
28 |
"step": 200
|
29 |
},
|
30 |
{
|
31 |
"epoch": 0.48,
|
32 |
+
"learning_rate": 1.9999999999999998e-05,
|
33 |
+
"loss": 0.1238,
|
34 |
"step": 300
|
35 |
},
|
36 |
{
|
37 |
+
"epoch": 0.63,
|
38 |
+
"learning_rate": 2.6666666666666667e-05,
|
39 |
+
"loss": 0.0989,
|
40 |
"step": 400
|
41 |
},
|
42 |
{
|
43 |
+
"epoch": 0.63,
|
44 |
+
"eval_loss": 0.49464675784111023,
|
45 |
+
"eval_runtime": 152.2596,
|
46 |
+
"eval_samples_per_second": 27.105,
|
47 |
+
"eval_wer": 0.25449884913161747,
|
48 |
"step": 400
|
49 |
},
|
50 |
{
|
51 |
+
"epoch": 0.79,
|
52 |
+
"learning_rate": 2.9743589743589744e-05,
|
53 |
+
"loss": 0.0872,
|
54 |
"step": 500
|
55 |
},
|
56 |
{
|
57 |
+
"epoch": 0.95,
|
58 |
+
"learning_rate": 2.923076923076923e-05,
|
59 |
+
"loss": 0.0882,
|
60 |
"step": 600
|
61 |
},
|
62 |
{
|
63 |
+
"epoch": 0.95,
|
64 |
+
"eval_loss": 0.48914414644241333,
|
65 |
+
"eval_runtime": 153.1646,
|
66 |
+
"eval_samples_per_second": 26.945,
|
67 |
+
"eval_wer": 0.24939840970914418,
|
68 |
"step": 600
|
69 |
},
|
70 |
{
|
71 |
+
"epoch": 1.11,
|
72 |
+
"learning_rate": 2.871794871794872e-05,
|
73 |
+
"loss": 0.0801,
|
74 |
"step": 700
|
75 |
},
|
76 |
{
|
77 |
+
"epoch": 1.27,
|
78 |
+
"learning_rate": 2.8205128205128207e-05,
|
79 |
+
"loss": 0.0769,
|
80 |
"step": 800
|
81 |
},
|
82 |
{
|
83 |
+
"epoch": 1.27,
|
84 |
+
"eval_loss": 0.4904399812221527,
|
85 |
+
"eval_runtime": 151.6576,
|
86 |
+
"eval_samples_per_second": 27.213,
|
87 |
+
"eval_wer": 0.24746285833856455,
|
88 |
"step": 800
|
89 |
},
|
90 |
{
|
91 |
+
"epoch": 1.43,
|
92 |
+
"learning_rate": 2.7692307692307694e-05,
|
93 |
+
"loss": 0.0755,
|
94 |
"step": 900
|
95 |
},
|
96 |
{
|
97 |
+
"epoch": 1.59,
|
98 |
+
"learning_rate": 2.717948717948718e-05,
|
99 |
+
"loss": 0.0682,
|
100 |
"step": 1000
|
101 |
},
|
102 |
{
|
103 |
+
"epoch": 1.59,
|
104 |
+
"eval_loss": 0.49137312173843384,
|
105 |
+
"eval_runtime": 150.2065,
|
106 |
+
"eval_samples_per_second": 27.476,
|
107 |
+
"eval_wer": 0.24620736555764805,
|
108 |
"step": 1000
|
109 |
},
|
110 |
{
|
111 |
+
"epoch": 1.75,
|
112 |
+
"learning_rate": 2.6666666666666667e-05,
|
113 |
+
"loss": 0.0664,
|
114 |
"step": 1100
|
115 |
},
|
116 |
{
|
117 |
+
"epoch": 1.9,
|
118 |
+
"learning_rate": 2.6153846153846157e-05,
|
119 |
+
"loss": 0.0669,
|
120 |
"step": 1200
|
121 |
},
|
122 |
{
|
123 |
+
"epoch": 1.9,
|
124 |
+
"eval_loss": 0.4783032238483429,
|
125 |
+
"eval_runtime": 152.2438,
|
126 |
+
"eval_samples_per_second": 27.108,
|
127 |
+
"eval_wer": 0.24448106298388783,
|
128 |
"step": 1200
|
129 |
},
|
130 |
{
|
131 |
+
"epoch": 2.06,
|
132 |
+
"learning_rate": 2.564102564102564e-05,
|
133 |
+
"loss": 0.0681,
|
134 |
"step": 1300
|
135 |
},
|
136 |
{
|
137 |
+
"epoch": 2.22,
|
138 |
+
"learning_rate": 2.512820512820513e-05,
|
139 |
+
"loss": 0.062,
|
140 |
"step": 1400
|
141 |
},
|
142 |
{
|
143 |
+
"epoch": 2.22,
|
144 |
+
"eval_loss": 0.492949515581131,
|
145 |
+
"eval_runtime": 151.7551,
|
146 |
+
"eval_samples_per_second": 27.195,
|
147 |
+
"eval_wer": 0.24312094580456162,
|
148 |
"step": 1400
|
149 |
},
|
150 |
{
|
151 |
+
"epoch": 2.38,
|
152 |
+
"learning_rate": 2.4615384615384616e-05,
|
153 |
+
"loss": 0.0603,
|
154 |
"step": 1500
|
155 |
},
|
156 |
{
|
157 |
+
"epoch": 2.54,
|
158 |
+
"learning_rate": 2.4102564102564103e-05,
|
159 |
+
"loss": 0.0627,
|
160 |
"step": 1600
|
161 |
},
|
162 |
{
|
163 |
+
"epoch": 2.54,
|
164 |
+
"eval_loss": 0.48576003313064575,
|
165 |
+
"eval_runtime": 151.5396,
|
166 |
+
"eval_samples_per_second": 27.234,
|
167 |
+
"eval_wer": 0.24445490688428542,
|
168 |
"step": 1600
|
169 |
},
|
170 |
{
|
171 |
+
"epoch": 2.7,
|
172 |
+
"learning_rate": 2.358974358974359e-05,
|
173 |
+
"loss": 0.0601,
|
174 |
"step": 1700
|
175 |
},
|
176 |
{
|
177 |
+
"epoch": 2.86,
|
178 |
+
"learning_rate": 2.307692307692308e-05,
|
179 |
+
"loss": 0.0569,
|
180 |
"step": 1800
|
181 |
},
|
182 |
{
|
183 |
+
"epoch": 2.86,
|
184 |
+
"eval_loss": 0.4850601851940155,
|
185 |
+
"eval_runtime": 152.3874,
|
186 |
+
"eval_samples_per_second": 27.082,
|
187 |
+
"eval_wer": 0.24267629211132036,
|
188 |
"step": 1800
|
189 |
},
|
190 |
{
|
191 |
+
"epoch": 3.02,
|
192 |
+
"learning_rate": 2.2564102564102566e-05,
|
193 |
+
"loss": 0.0526,
|
194 |
"step": 1900
|
195 |
},
|
196 |
{
|
197 |
+
"epoch": 3.17,
|
198 |
+
"learning_rate": 2.2051282051282052e-05,
|
199 |
+
"loss": 0.0439,
|
200 |
"step": 2000
|
201 |
},
|
202 |
{
|
203 |
+
"epoch": 3.17,
|
204 |
+
"eval_loss": 0.47941696643829346,
|
205 |
+
"eval_runtime": 152.2838,
|
206 |
+
"eval_samples_per_second": 27.101,
|
207 |
+
"eval_wer": 0.2431994141033689,
|
208 |
"step": 2000
|
209 |
},
|
210 |
{
|
211 |
+
"epoch": 3.33,
|
212 |
+
"learning_rate": 2.153846153846154e-05,
|
213 |
+
"loss": 0.0486,
|
214 |
"step": 2100
|
215 |
},
|
216 |
{
|
217 |
+
"epoch": 3.49,
|
218 |
+
"learning_rate": 2.1025641025641025e-05,
|
219 |
+
"loss": 0.0437,
|
220 |
"step": 2200
|
221 |
},
|
222 |
{
|
223 |
+
"epoch": 3.49,
|
224 |
+
"eval_loss": 0.481067955493927,
|
225 |
+
"eval_runtime": 151.9904,
|
226 |
+
"eval_samples_per_second": 27.153,
|
227 |
+
"eval_wer": 0.2431994141033689,
|
228 |
"step": 2200
|
229 |
},
|
230 |
{
|
231 |
+
"epoch": 3.65,
|
232 |
+
"learning_rate": 2.0512820512820515e-05,
|
233 |
+
"loss": 0.0384,
|
234 |
"step": 2300
|
235 |
},
|
236 |
{
|
237 |
+
"epoch": 3.81,
|
238 |
+
"learning_rate": 1.9999999999999998e-05,
|
239 |
+
"loss": 0.0415,
|
240 |
"step": 2400
|
241 |
},
|
242 |
{
|
243 |
+
"epoch": 3.81,
|
244 |
+
"eval_loss": 0.4836219847202301,
|
245 |
+
"eval_runtime": 152.3729,
|
246 |
+
"eval_samples_per_second": 27.085,
|
247 |
+
"eval_wer": 0.24212701401966938,
|
248 |
"step": 2400
|
249 |
},
|
250 |
{
|
251 |
+
"epoch": 3.97,
|
252 |
+
"learning_rate": 1.9487179487179488e-05,
|
253 |
+
"loss": 0.0398,
|
254 |
"step": 2500
|
255 |
},
|
256 |
{
|
257 |
+
"epoch": 4.13,
|
258 |
+
"learning_rate": 1.8974358974358975e-05,
|
259 |
+
"loss": 0.0399,
|
260 |
"step": 2600
|
261 |
},
|
262 |
{
|
263 |
+
"epoch": 4.13,
|
264 |
+
"eval_loss": 0.48345065116882324,
|
265 |
+
"eval_runtime": 151.6188,
|
266 |
+
"eval_samples_per_second": 27.22,
|
267 |
+
"eval_wer": 0.24170851642603056,
|
268 |
"step": 2600
|
269 |
},
|
270 |
{
|
271 |
+
"epoch": 4.29,
|
272 |
+
"learning_rate": 1.8461538461538465e-05,
|
273 |
+
"loss": 0.0367,
|
274 |
"step": 2700
|
275 |
},
|
276 |
{
|
277 |
+
"epoch": 4.44,
|
278 |
+
"learning_rate": 1.7948717948717948e-05,
|
279 |
+
"loss": 0.0361,
|
280 |
"step": 2800
|
281 |
},
|
282 |
{
|
283 |
+
"epoch": 4.44,
|
284 |
+
"eval_loss": 0.4902171790599823,
|
285 |
+
"eval_runtime": 152.2588,
|
286 |
+
"eval_samples_per_second": 27.105,
|
287 |
+
"eval_wer": 0.24131617493199414,
|
288 |
"step": 2800
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
}
|
290 |
],
|
291 |
+
"max_steps": 6300,
|
292 |
+
"num_train_epochs": 10,
|
293 |
+
"total_flos": 2.1761689418766148e+19,
|
294 |
"trial_name": null,
|
295 |
"trial_params": null
|
296 |
}
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2351
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4e43089cce3509942d599d030fda34b6b77b40e5839002693f8638c39f46025
|
3 |
size 2351
|