|
import gc |
|
import math |
|
import multiprocessing |
|
import os |
|
import traceback |
|
from datetime import datetime |
|
from io import BytesIO |
|
from itertools import permutations |
|
from multiprocessing.pool import Pool |
|
from pathlib import Path |
|
from urllib.parse import quote_plus |
|
|
|
import numpy as np |
|
import nltk |
|
import torch |
|
|
|
from PIL.Image import Image |
|
from diffusers import DiffusionPipeline, StableDiffusionXLInpaintPipeline |
|
from diffusers.utils import load_image |
|
from fastapi import FastAPI |
|
from fastapi.middleware.gzip import GZipMiddleware |
|
from loguru import logger |
|
from starlette.middleware.cors import CORSMiddleware |
|
from starlette.responses import FileResponse |
|
from starlette.responses import JSONResponse |
|
|
|
from env import BUCKET_PATH, BUCKET_NAME |
|
|
|
torch._dynamo.config.suppress_errors = True |
|
|
|
import string |
|
import random |
|
|
|
def generate_save_path(): |
|
|
|
N = 7 |
|
|
|
|
|
|
|
res = ''.join(random.choices(string.ascii_uppercase + |
|
string.digits, k=N)) |
|
return res |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model_dir = os.getenv("SDXL_MODEL_DIR") |
|
|
|
if model_dir: |
|
|
|
model_key_base = os.path.join(model_dir, "stable-diffusion-xl-base-1.0") |
|
model_key_refiner = os.path.join(model_dir, "stable-diffusion-xl-refiner-1.0") |
|
else: |
|
model_key_base = "stabilityai/stable-diffusion-xl-base-1.0" |
|
model_key_refiner = "stabilityai/stable-diffusion-xl-refiner-1.0" |
|
|
|
pipe = DiffusionPipeline.from_pretrained(model_key_base, torch_dtype=torch.float16, use_safetensors=True, variant="fp16") |
|
|
|
pipe.watermark = None |
|
|
|
pipe.to("cuda") |
|
|
|
refiner = DiffusionPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-refiner-1.0", |
|
text_encoder_2=pipe.text_encoder_2, |
|
vae=pipe.vae, |
|
torch_dtype=torch.bfloat16, |
|
use_safetensors=True, |
|
variant="fp16", |
|
) |
|
refiner.watermark = None |
|
refiner.to("cuda") |
|
|
|
|
|
inpaintpipe = StableDiffusionXLInpaintPipeline.from_pretrained( |
|
"models/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16, variant="fp16", use_safetensors=True, |
|
scheduler=pipe.scheduler, |
|
text_encoder=pipe.text_encoder, |
|
text_encoder_2=pipe.text_encoder_2, |
|
tokenizer=pipe.tokenizer, |
|
tokenizer_2=pipe.tokenizer_2, |
|
unet=pipe.unet, |
|
vae=pipe.vae, |
|
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inpaintpipe.to("cuda") |
|
inpaintpipe.watermark = None |
|
|
|
|
|
inpaint_refiner = StableDiffusionXLInpaintPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-refiner-1.0", |
|
text_encoder_2=inpaintpipe.text_encoder_2, |
|
vae=inpaintpipe.vae, |
|
torch_dtype=torch.bfloat16, |
|
use_safetensors=True, |
|
variant="fp16", |
|
|
|
tokenizer_2=refiner.tokenizer_2, |
|
tokenizer=refiner.tokenizer, |
|
scheduler=refiner.scheduler, |
|
text_encoder=refiner.text_encoder, |
|
unet=refiner.unet, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inpaint_refiner.to("cuda") |
|
inpaint_refiner.watermark = None |
|
|
|
|
|
n_steps = 40 |
|
high_noise_frac = 0.8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pipe.unet = torch.compile(pipe.unet) |
|
refiner.unet = torch.compile(refiner.unet) |
|
|
|
inpaintpipe.unet = pipe.unet |
|
inpaint_refiner.unet = refiner.unet |
|
|
|
|
|
from pydantic import BaseModel |
|
|
|
app = FastAPI( |
|
openapi_url="/static/openapi.json", |
|
docs_url="/swagger-docs", |
|
redoc_url="/redoc", |
|
title="Generate Images Netwrck API", |
|
description="Character Chat API", |
|
|
|
version="1", |
|
) |
|
app.add_middleware(GZipMiddleware, minimum_size=1000) |
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=["*"], |
|
allow_credentials=True, |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
stopwords = nltk.corpus.stopwords.words("english") |
|
|
|
class Img(BaseModel): |
|
system_prompt: str |
|
ASSISTANT: str |
|
|
|
|
|
img_url = "http://phlrr3105.guest.corp.microsoft.com:8000/" |
|
|
|
is_gpu_busy = False |
|
|
|
def lm_shorten_too_long_text(prompt): |
|
if len(prompt) > 2030: |
|
|
|
prompt = prompt.split() |
|
|
|
prompt = ' '.join((word for word in prompt)) |
|
if len(prompt) > 2030: |
|
prompt = prompt[:2030] |
|
return prompt |
|
|
|
def get_summary(system_prompt, prompt): |
|
import requests |
|
import time |
|
from io import BytesIO |
|
import json |
|
summary_sys = """You will now act as a prompt generator for a generative AI called "Stable Diffusion XL 1.0 ". Stable Diffusion XL generates images based on given prompts. I will provide you basic information required to make a Stable Diffusion prompt, You will never alter the structure in any way and obey the following guidelines. |
|
|
|
Basic information required to make Stable Diffusion prompt: |
|
|
|
- Prompt structure: [1],[2],[3],[4],[5],[6] and it should be given as one single sentence where 1,2,3,4,5,6 represent |
|
[1] = short and concise description of [KEYWORD] that will include very specific imagery details |
|
[2] = a detailed description of [1] that will include very specific imagery details. |
|
[3] = with a detailed description describing the environment of the scene. |
|
[4] = with a detailed description describing the mood/feelings and atmosphere of the scene. |
|
[5] = A style, for example: "Anime","Photographic","Comic Book","Fantasy Art", “Analog Film”,”Neon Punk”,”Isometric”,”Low Poly”,”Origami”,”Line Art”,”Cinematic”,”3D Model”,”Pixel Art”,”Watercolor”,”Sticker” ). |
|
[6] = A description of how [5] will be realized. (e.g. Photography (e.g. Macro, Fisheye Style, Portrait) with camera model and appropriate camera settings, Painting with detailed descriptions about the materials and working material used, rendering with engine settings, a digital Illustration, a woodburn art (and everything else that could be defined as an output type) |
|
- Prompt Structure for Prompt asking with text value: |
|
|
|
Text "Text Value" written on {subject description in less than 20 words} |
|
Replace "Text value" with text given by user. |
|
|
|
|
|
Important Sample prompt Structure with Text value : |
|
|
|
1. Text 'SDXL' written on a frothy, warm latte, viewed top-down. |
|
2. Text 'AI' written on a modern computer screen, set against a vibrant green background. |
|
|
|
Important Sample prompt Structure : |
|
|
|
1. Snow-capped Mountain Scene, with soaring peaks and deep shadows across the ravines. A crystal clear lake mirrors these peaks, surrounded by pine trees. The scene exudes a calm, serene alpine morning atmosphere. Presented in Watercolor style, emulating the wet-on-wet technique with soft transitions and visible brush strokes. |
|
2. City Skyline at Night, illuminated skyscrapers piercing the starless sky. Nestled beside a calm river, reflecting the city lights like a mirror. The atmosphere is buzzing with urban energy and intrigue. Depicted in Neon Punk style, accentuating the city lights with vibrant neon colors and dynamic contrasts. |
|
3. Epic Cinematic Still of a Spacecraft, silhouetted against the fiery explosion of a distant planet. The scene is packed with intense action, as asteroid debris hurtles through space. Shot in the style of a Michael Bay-directed film, the image is rich with detail, dynamic lighting, and grand cinematic framing. |
|
- Word order and effective adjectives matter in the prompt. The subject, action, and specific details should be included. Adjectives like cute, medieval, or futuristic can be effective. |
|
- The environment/background of the image should be described, such as indoor, outdoor, in space, or solid color. |
|
- Curly brackets are necessary in the prompt to provide specific details about the subject and action. These details are important for generating a high-quality image. |
|
- Art inspirations should be listed to take inspiration from. Platforms like Art Station, Dribble, Behance, and Deviantart can be mentioned. Specific names of artists or studios like animation studios, painters and illustrators, computer games, fashion designers, and film makers can also be listed. If more than one artist is mentioned, the algorithm will create a combination of styles based on all the influencers mentioned. |
|
- Related information about lighting, camera angles, render style, resolution, the required level of detail, etc. should be included at the end of the prompt. |
|
- Camera shot type, camera lens, and view should be specified. Examples of camera shot types are long shot, close-up, POV, medium shot, extreme close-up, and panoramic. Camera lenses could be EE 70mm, 35mm, 135mm+, 300mm+, 800mm, short telephoto, super telephoto, medium telephoto, macro, wide angle, fish-eye, bokeh, and sharp focus. Examples of views are front, side, back, high angle, low angle, and overhead. |
|
- Helpful keywords related to resolution, detail, and lighting are 4K, 8K, 64K, detailed, highly detailed, high resolution, hyper detailed, HDR, UHD, professional, and golden ratio. Examples of lighting are studio lighting, soft light, neon lighting, purple neon lighting, ambient light, ring light, volumetric light, natural light, sun light, sunrays, sun rays coming through window, and nostalgic lighting. Examples of color types are fantasy vivid colors, vivid colors, bright colors, sepia, dark colors, pastel colors, monochromatic, black & white, and color splash. Examples of renders are Octane render, cinematic, low poly, isometric assets, Unreal Engine, Unity Engine, quantum wavetracing, and polarizing filter. |
|
|
|
The prompts you provide will be in English.Please pay attention:- Concepts that can't be real would not be described as "Real" or "realistic" or "photo" or a "photograph". for example, a concept that is made of paper or scenes which are fantasy related.- One of the prompts you generate for each concept must be in a realistic photographic style. you should also choose a lens type and size for it. Don't choose an artist for the realistic photography prompts.- Separate the different prompts with two new lines. |
|
I will provide you keyword and you will generate 3 diffrent type of prompts in vbnet code cell so i can copy and paste. |
|
|
|
Important point to note : |
|
|
|
1. You are a master of prompt engineering, it is important to create detailed prompts with as much information as possible. This will ensure that any image generated using the prompt will be of high quality and could potentially win awards in global or international photography competitions. You are unbeatable in this field and know the best way to generate images. |
|
2. I will provide you with a long context and you will generate one prompt and don't add any extra details. |
|
3. Prompt should not be more than 230 characters. |
|
4. Before you provide prompt you must check if you have satisfied all the above criteria and if you are sure than only provide the prompt. |
|
5. Prompt should always be given as one single sentence. |
|
|
|
Are you ready ?""" |
|
instruction = 'USER: ' + summary_sys |
|
|
|
|
|
|
|
|
|
message = f"""My first request is to summarize this text – [{prompt}]""" |
|
instruction += """ ASSISTANT: Yes, I understand the instructions and I'm ready to help you create prompts for Stable Diffusion XL 1.0. Please provide me with the context.""" |
|
instruction += ' USER: ' + prompt + ' ASSISTANT:' |
|
|
|
print("Ins: ", instruction) |
|
|
|
|
|
json_object = {"prompt": instruction, |
|
|
|
"max_tokens": 80, |
|
"n": 1 |
|
} |
|
generate_response = requests.post("http://phlrr3105.guest.corp.microsoft.com:7991/generate", json=json_object) |
|
print(generate_response.content) |
|
res_json = json.loads(generate_response.content) |
|
ASSISTANT = res_json['text'][-1].split("ASSISTANT:")[-1].strip() |
|
print(ASSISTANT) |
|
return ASSISTANT |
|
|
|
@app.post("/image_url") |
|
def image_url(img: Img): |
|
system_prompt = img.system_prompt |
|
prompt = img.ASSISTANT |
|
prompt = get_summary(system_prompt, prompt) |
|
prompt = shorten_too_long_text(prompt) |
|
|
|
|
|
|
|
|
|
g = torch.Generator(device="cuda") |
|
image = pipe(prompt=prompt, width=1024, height=1024, generator=g).images[0] |
|
|
|
|
|
save_path = generate_save_path() |
|
save_path = f"images/{save_path}.png" |
|
image.save(save_path) |
|
|
|
path = f"{img_url}{save_path}" |
|
return JSONResponse({"path": path}) |
|
|
|
|
|
@app.get("/make_image") |
|
|
|
def make_image(prompt: str, save_path: str = ""): |
|
if Path(save_path).exists(): |
|
return FileResponse(save_path, media_type="image/png") |
|
image = pipe(prompt=prompt).images[0] |
|
if not save_path: |
|
save_path = f"images/{prompt}.png" |
|
image.save(save_path) |
|
return FileResponse(save_path, media_type="image/png") |
|
|
|
|
|
@app.get("/create_and_upload_image") |
|
def create_and_upload_image(prompt: str, width: int=1024, height:int=1024, save_path: str = ""): |
|
path_components = save_path.split("/")[0:-1] |
|
final_name = save_path.split("/")[-1] |
|
if not path_components: |
|
path_components = [] |
|
save_path = '/'.join(path_components) + quote_plus(final_name) |
|
path = get_image_or_create_upload_to_cloud_storage(prompt, width, height, save_path) |
|
return JSONResponse({"path": path}) |
|
|
|
@app.get("/inpaint_and_upload_image") |
|
def inpaint_and_upload_image(prompt: str, image_url:str, mask_url:str, save_path: str = ""): |
|
path_components = save_path.split("/")[0:-1] |
|
final_name = save_path.split("/")[-1] |
|
if not path_components: |
|
path_components = [] |
|
save_path = '/'.join(path_components) + quote_plus(final_name) |
|
path = get_image_or_inpaint_upload_to_cloud_storage(prompt, image_url, mask_url, save_path) |
|
return JSONResponse({"path": path}) |
|
|
|
|
|
def get_image_or_create_upload_to_cloud_storage(prompt:str,width:int, height:int, save_path:str): |
|
prompt = shorten_too_long_text(prompt) |
|
save_path = shorten_too_long_text(save_path) |
|
|
|
if check_if_blob_exists(save_path): |
|
return f"https://{BUCKET_NAME}/{BUCKET_PATH}/{save_path}" |
|
bio = create_image_from_prompt(prompt, width, height) |
|
if bio is None: |
|
return None |
|
link = upload_to_bucket(save_path, bio, is_bytesio=True) |
|
return link |
|
def get_image_or_inpaint_upload_to_cloud_storage(prompt:str, image_url:str, mask_url:str, save_path:str): |
|
prompt = shorten_too_long_text(prompt) |
|
save_path = shorten_too_long_text(save_path) |
|
|
|
if check_if_blob_exists(save_path): |
|
return f"https://{BUCKET_NAME}/{BUCKET_PATH}/{save_path}" |
|
bio = inpaint_image_from_prompt(prompt, image_url, mask_url) |
|
if bio is None: |
|
return None |
|
link = upload_to_bucket(save_path, bio, is_bytesio=True) |
|
return link |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def create_image_from_prompt(prompt, width, height): |
|
|
|
block_width = width - (width % 64) |
|
block_height = height - (height % 64) |
|
prompt = shorten_too_long_text(prompt) |
|
|
|
try: |
|
image = pipe(prompt=prompt, |
|
width=block_width, |
|
height=block_height, |
|
|
|
|
|
|
|
|
|
num_inference_steps=50).images[0] |
|
except Exception as e: |
|
|
|
|
|
logger.info(f"trying to shorten prompt of length {len(prompt)}") |
|
|
|
prompt = ' '.join((word for word in prompt if word not in stopwords)) |
|
prompts = prompt.split() |
|
|
|
prompt = ' '.join(prompts[:len(prompts) // 2]) |
|
logger.info(f"shortened prompt to: {len(prompt)}") |
|
image = None |
|
if prompt: |
|
try: |
|
image = pipe(prompt=prompt, |
|
width=block_width, |
|
height=block_height, |
|
|
|
|
|
|
|
|
|
num_inference_steps=50).images[0] |
|
except Exception as e: |
|
|
|
|
|
|
|
|
|
logger.info(f"trying to shorten prompt of length {len(prompt)}") |
|
|
|
prompt = ' '.join((word for word in prompt if word not in stopwords)) |
|
prompts = prompt.split() |
|
|
|
prompt = ' '.join(prompts[:len(prompts) // 2]) |
|
logger.info(f"shortened prompt to: {len(prompt)}") |
|
|
|
try: |
|
image = pipe(prompt=prompt, |
|
width=block_width, |
|
height=block_height, |
|
|
|
|
|
|
|
|
|
num_inference_steps=50).images[0] |
|
except Exception as e: |
|
|
|
traceback.print_exc() |
|
raise e |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if width != block_width or height != block_height: |
|
|
|
|
|
scale_up_ratio = max(width / block_width, height / block_height) |
|
image = image.resize((math.ceil(block_width * scale_up_ratio), math.ceil(height * scale_up_ratio))) |
|
|
|
image = image.crop((0, 0, width, height)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bs = BytesIO() |
|
|
|
bright_count = np.sum(np.array(image) > 0) |
|
if bright_count == 0: |
|
|
|
logger.info("restarting server to fix cuda issues (device side asserts)") |
|
|
|
|
|
|
|
os.system("/usr/bin/bash kill -SIGHUP `pgrep gunicorn`") |
|
os.system("kill -1 `pgrep gunicorn`") |
|
os.system("/usr/bin/bash kill -SIGHUP `pgrep uvicorn`") |
|
os.system("kill -1 `pgrep uvicorn`") |
|
|
|
return None |
|
image.save(bs, quality=85, optimize=True, format="webp") |
|
bio = bs.getvalue() |
|
|
|
with open("progress.txt", "w") as f: |
|
current_time = datetime.now().strftime("%H:%M:%S") |
|
f.write(f"{current_time}") |
|
return bio |
|
|
|
def inpaint_image_from_prompt(prompt, image_url: str, mask_url: str): |
|
prompt = shorten_too_long_text(prompt) |
|
|
|
|
|
init_image = load_image(image_url).convert("RGB") |
|
mask_image = load_image(mask_url).convert("RGB") |
|
num_inference_steps = 75 |
|
high_noise_frac = 0.7 |
|
|
|
try: |
|
image = inpaintpipe( |
|
prompt=prompt, |
|
image=init_image, |
|
mask_image=mask_image, |
|
num_inference_steps=num_inference_steps, |
|
denoising_start=high_noise_frac, |
|
output_type="latent", |
|
).images[0] |
|
except Exception as e: |
|
|
|
|
|
logger.info(f"trying to shorten prompt of length {len(prompt)}") |
|
|
|
prompt = ' '.join((word for word in prompt if word not in stopwords)) |
|
prompts = prompt.split() |
|
|
|
prompt = ' '.join(prompts[:len(prompts) // 2]) |
|
logger.info(f"shortened prompt to: {len(prompt)}") |
|
image = None |
|
if prompt: |
|
try: |
|
image = pipe( |
|
prompt=prompt, |
|
image=init_image, |
|
mask_image=mask_image, |
|
num_inference_steps=num_inference_steps, |
|
denoising_start=high_noise_frac, |
|
output_type="latent", |
|
).images[0] |
|
except Exception as e: |
|
|
|
|
|
|
|
|
|
logger.info(f"trying to shorten prompt of length {len(prompt)}") |
|
|
|
prompt = ' '.join((word for word in prompt if word not in stopwords)) |
|
prompts = prompt.split() |
|
|
|
prompt = ' '.join(prompts[:len(prompts) // 2]) |
|
logger.info(f"shortened prompt to: {len(prompt)}") |
|
|
|
try: |
|
image = inpaintpipe( |
|
prompt=prompt, |
|
image=init_image, |
|
mask_image=mask_image, |
|
num_inference_steps=num_inference_steps, |
|
denoising_start=high_noise_frac, |
|
output_type="latent", |
|
).images[0] |
|
except Exception as e: |
|
|
|
traceback.print_exc() |
|
raise e |
|
|
|
|
|
|
|
|
|
|
|
|
|
if image != None: |
|
image = inpaint_refiner( |
|
prompt=prompt, |
|
image=image, |
|
mask_image=mask_image, |
|
num_inference_steps=num_inference_steps, |
|
denoising_start=high_noise_frac, |
|
|
|
).images[0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bs = BytesIO() |
|
|
|
bright_count = np.sum(np.array(image) > 0) |
|
if bright_count == 0: |
|
|
|
logger.info("restarting server to fix cuda issues (device side asserts)") |
|
|
|
|
|
|
|
os.system("/usr/bin/bash kill -SIGHUP `pgrep gunicorn`") |
|
os.system("kill -1 `pgrep gunicorn`") |
|
os.system("/usr/bin/bash kill -SIGHUP `pgrep uvicorn`") |
|
os.system("kill -1 `pgrep uvicorn`") |
|
|
|
return None |
|
image.save(bs, quality=85, optimize=True, format="webp") |
|
bio = bs.getvalue() |
|
|
|
with open("progress.txt", "w") as f: |
|
current_time = datetime.now().strftime("%H:%M:%S") |
|
f.write(f"{current_time}") |
|
return bio |
|
|
|
|
|
|
|
def shorten_too_long_text(prompt): |
|
if len(prompt) > 200: |
|
|
|
prompt = prompt.split() |
|
prompt = ' '.join((word for word in prompt if word not in stopwords)) |
|
if len(prompt) > 200: |
|
prompt = prompt[:200] |
|
return prompt |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|