from pathlib import Path | |
import numpy as np | |
import requests | |
import torch | |
from PIL import Image | |
from io import BytesIO | |
# from diffusers import StableDiffusionImg2ImgPipeline | |
# device = "cuda" | |
# model_id_or_path = "runwayml/stable-diffusion-v1-5" | |
# # model_id_or_path = "models/stable-diffusion-xl-base-0.9" | |
# pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16, variant="fp16", safety_checker=None) | |
# pipe = pipe.to(device) | |
from diffusers import StableDiffusionXLImg2ImgPipeline | |
from diffusers.utils import load_image | |
from stable_diffusion_server.utils import log_time | |
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-refiner-1.0", | |
# "models/stable-diffusion-xl-base-0.9", | |
torch_dtype = torch.float16, | |
use_safetensors=True, | |
variant="fp16", | |
) | |
pipe = pipe.to("cuda") # # "LayerNormKernelImpl" not implemented for 'Half' error if its on cpu it cant do fp16 | |
# idea composite: and re prompt img-img to support different sizes | |
# url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" | |
# | |
# response = requests.get(url) | |
# init_image = Image.open(BytesIO(response.content)).convert("RGB") | |
# init_image = init_image.resize((768, 512)) | |
# successfully inpaints a deleted area strength=0.75 | |
# init_image = Image.open("/mnt/c/Users/leepenkman/Pictures/aiart/ainostalgic-colorful-relaxing-chill-realistic-cartoon-Charcoal-illustration-fantasy-fauvist-abstract-impressionist-watercolor-painting-Background-location-scenery-amazing-wonderful-Dog-Shelter-Worker-Dog.webp").convert("RGB") | |
# redo something? strength 1 | |
# init_image = Image.open("/home/lee/code/sdif/mask.png").convert("RGB") | |
init_image = Image.open("/mnt/c/Users/leepenkman/Pictures/dogstretch.png").convert("RGB") | |
# init_image = Image.open("/mnt/c/Users/leepenkman/Pictures/dogcenter.png").convert("RGB") | |
# init_image = init_image.resize((1080, 1920)) | |
init_image = init_image.resize((1920, 1080)) | |
# init_image = init_image.resize((1024, 1024)) | |
prompt = "A fantasy landscape, trending on artstation, beautiful amazing unreal surreal gorgeous impressionism" | |
prompt = "mouth open nostalgic colorful relaxing chill realistic cartoon Charcoal illustration fantasy fauvist abstract impressionist watercolor painting Background location scenery amazing wonderful Dog Shelter Worker Dog" | |
# images = pipe(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5).images | |
# images[0].save("fantasy_landscape.png") | |
# | |
# # url = "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png" | |
# | |
# init_image = load_image(url).convert("RGB") | |
# prompt = "a photo of an astronaut riding a horse on mars" | |
study_dir = "images/study2" | |
Path(study_dir).mkdir(parents=True, exist_ok=True) | |
with log_time("img2img"): | |
with torch.inference_mode(): | |
# for strength in range(.1, 1, .1): | |
for strength in np.linspace(.1, 1, 10): | |
image = pipe(prompt=prompt, image=init_image, strength=strength, guidance_scale=7.6).images[0] | |
image.save( | |
study_dir + "/fantasy_dogimgimgdogstretchopening" + str(strength) + "guidance_scale" + str(7.6) + ".png") | |
# # for guidance_scale in range(1, 10, .5): | |
# for guidance_scale in np.linspace(1, 100, 10): | |
# image = pipe(prompt=prompt, image=init_image, strength=strength, guidance_scale=guidance_scale).images[0] | |
# image.save("images/study/fantasy_dogimgimgdogstretch" + str(strength) + "guidance_scale" + str(guidance_scale) + ".png") | |
# image = pipe(prompt, image=init_image, strength=0.2, guidance_scale=7.5).images[0] | |
# image.save("images/fantasy_dogimgimgdogstretch.png") | |
# image.save("images/fantasy_dogimgimgdogcenter.png") | |