tangmen's picture
add files
113dbd0
raw
history blame
30.3 kB
import gc
import math
import multiprocessing
import os
import traceback
from datetime import datetime
from io import BytesIO
from itertools import permutations
from multiprocessing.pool import Pool
from pathlib import Path
from urllib.parse import quote_plus
import numpy as np
import nltk
import torch
from PIL.Image import Image
from diffusers import DiffusionPipeline, StableDiffusionXLInpaintPipeline
from diffusers.utils import load_image
from fastapi import FastAPI
from fastapi.middleware.gzip import GZipMiddleware
from loguru import logger
from starlette.middleware.cors import CORSMiddleware
from starlette.responses import FileResponse
from starlette.responses import JSONResponse
from env import BUCKET_PATH, BUCKET_NAME
# from stable_diffusion_server.bucket_api import check_if_blob_exists, upload_to_bucket
torch._dynamo.config.suppress_errors = True
import string
import random
def generate_save_path():
# initializing size of string
N = 7
# using random.choices()
# generating random strings
res = ''.join(random.choices(string.ascii_uppercase +
string.digits, k=N))
return res
# pipe = DiffusionPipeline.from_pretrained(
# "models/stable-diffusion-xl-base-1.0",
# torch_dtype=torch.bfloat16,
# use_safetensors=True,
# variant="fp16",
# # safety_checker=None,
# ) # todo try torch_dtype=bfloat16
model_dir = os.getenv("SDXL_MODEL_DIR")
if model_dir:
# Use local model
model_key_base = os.path.join(model_dir, "stable-diffusion-xl-base-1.0")
model_key_refiner = os.path.join(model_dir, "stable-diffusion-xl-refiner-1.0")
else:
model_key_base = "stabilityai/stable-diffusion-xl-base-1.0"
model_key_refiner = "stabilityai/stable-diffusion-xl-refiner-1.0"
pipe = DiffusionPipeline.from_pretrained(model_key_base, torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
pipe.watermark = None
pipe.to("cuda")
refiner = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-refiner-1.0",
text_encoder_2=pipe.text_encoder_2,
vae=pipe.vae,
torch_dtype=torch.bfloat16, # safer to use bfloat?
use_safetensors=True,
variant="fp16", #remember not to download the big model
)
refiner.watermark = None
refiner.to("cuda")
# {'scheduler', 'text_encoder', 'text_encoder_2', 'tokenizer', 'tokenizer_2', 'unet', 'vae'} can be passed in from existing model
inpaintpipe = StableDiffusionXLInpaintPipeline.from_pretrained(
"models/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16, variant="fp16", use_safetensors=True,
scheduler=pipe.scheduler,
text_encoder=pipe.text_encoder,
text_encoder_2=pipe.text_encoder_2,
tokenizer=pipe.tokenizer,
tokenizer_2=pipe.tokenizer_2,
unet=pipe.unet,
vae=pipe.vae,
# load_connected_pipeline=
)
# # switch out to save gpu mem
# del inpaintpipe.vae
# del inpaintpipe.text_encoder_2
# del inpaintpipe.text_encoder
# del inpaintpipe.scheduler
# del inpaintpipe.tokenizer
# del inpaintpipe.tokenizer_2
# del inpaintpipe.unet
# inpaintpipe.vae = pipe.vae
# inpaintpipe.text_encoder_2 = pipe.text_encoder_2
# inpaintpipe.text_encoder = pipe.text_encoder
# inpaintpipe.scheduler = pipe.scheduler
# inpaintpipe.tokenizer = pipe.tokenizer
# inpaintpipe.tokenizer_2 = pipe.tokenizer_2
# inpaintpipe.unet = pipe.unet
# todo this should work
# inpaintpipe = StableDiffusionXLInpaintPipeline( # construct an inpainter using the existing model
# vae=pipe.vae,
# text_encoder_2=pipe.text_encoder_2,
# text_encoder=pipe.text_encoder,
# unet=pipe.unet,
# scheduler=pipe.scheduler,
# tokenizer=pipe.tokenizer,
# tokenizer_2=pipe.tokenizer_2,
# requires_aesthetics_score=False,
# )
inpaintpipe.to("cuda")
inpaintpipe.watermark = None
# inpaintpipe.register_to_config(requires_aesthetics_score=False)
inpaint_refiner = StableDiffusionXLInpaintPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-refiner-1.0",
text_encoder_2=inpaintpipe.text_encoder_2,
vae=inpaintpipe.vae,
torch_dtype=torch.bfloat16,
use_safetensors=True,
variant="fp16",
tokenizer_2=refiner.tokenizer_2,
tokenizer=refiner.tokenizer,
scheduler=refiner.scheduler,
text_encoder=refiner.text_encoder,
unet=refiner.unet,
)
# del inpaint_refiner.vae
# del inpaint_refiner.text_encoder_2
# del inpaint_refiner.text_encoder
# del inpaint_refiner.scheduler
# del inpaint_refiner.tokenizer
# del inpaint_refiner.tokenizer_2
# del inpaint_refiner.unet
# inpaint_refiner.vae = inpaintpipe.vae
# inpaint_refiner.text_encoder_2 = inpaintpipe.text_encoder_2
#
# inpaint_refiner.text_encoder = refiner.text_encoder
# inpaint_refiner.scheduler = refiner.scheduler
# inpaint_refiner.tokenizer = refiner.tokenizer
# inpaint_refiner.tokenizer_2 = refiner.tokenizer_2
# inpaint_refiner.unet = refiner.unet
# inpaint_refiner = StableDiffusionXLInpaintPipeline(
# text_encoder_2=inpaintpipe.text_encoder_2,
# vae=inpaintpipe.vae,
# # the rest from the existing refiner
# tokenizer_2=refiner.tokenizer_2,
# tokenizer=refiner.tokenizer,
# scheduler=refiner.scheduler,
# text_encoder=refiner.text_encoder,
# unet=refiner.unet,
# requires_aesthetics_score=False,
# )
inpaint_refiner.to("cuda")
inpaint_refiner.watermark = None
# inpaint_refiner.register_to_config(requires_aesthetics_score=False)
n_steps = 40
high_noise_frac = 0.8
# if using torch < 2.0
# pipe.enable_xformers_memory_efficient_attention()
# pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
# this can cause errors on some inputs so consider disabling it
pipe.unet = torch.compile(pipe.unet)
refiner.unet = torch.compile(refiner.unet)#, mode="reduce-overhead", fullgraph=True)
# compile the inpainters - todo reuse the other unets? swap out the models for others/del them so they share models and can be swapped efficiently
inpaintpipe.unet = pipe.unet
inpaint_refiner.unet = refiner.unet
# inpaintpipe.unet = torch.compile(inpaintpipe.unet)
# inpaint_refiner.unet = torch.compile(inpaint_refiner.unet)
from pydantic import BaseModel
app = FastAPI(
openapi_url="/static/openapi.json",
docs_url="/swagger-docs",
redoc_url="/redoc",
title="Generate Images Netwrck API",
description="Character Chat API",
# root_path="https://api.text-generator.io",
version="1",
)
app.add_middleware(GZipMiddleware, minimum_size=1000)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
stopwords = nltk.corpus.stopwords.words("english")
class Img(BaseModel):
system_prompt: str
ASSISTANT: str
# img_url = "http://phlrr2019.guest.corp.microsoft.com:8000/img1_sdv2.1.png"
img_url = "http://phlrr3105.guest.corp.microsoft.com:8000/"#/img1_sdv2.1.png"
is_gpu_busy = False
def lm_shorten_too_long_text(prompt):
if len(prompt) > 2030:
# remove stopwords
prompt = prompt.split() # todo also split hyphens
prompt = ' '.join((word for word in prompt))# if word not in stopwords))
if len(prompt) > 2030:
prompt = prompt[:2030]
return prompt
def get_summary(system_prompt, prompt):
import requests
import time
from io import BytesIO
import json
summary_sys = """You will now act as a prompt generator for a generative AI called "Stable Diffusion XL 1.0 ". Stable Diffusion XL generates images based on given prompts. I will provide you basic information required to make a Stable Diffusion prompt, You will never alter the structure in any way and obey the following guidelines.
Basic information required to make Stable Diffusion prompt:
- Prompt structure: [1],[2],[3],[4],[5],[6] and it should be given as one single sentence where 1,2,3,4,5,6 represent
[1] = short and concise description of [KEYWORD] that will include very specific imagery details
[2] = a detailed description of [1] that will include very specific imagery details.
[3] = with a detailed description describing the environment of the scene.
[4] = with a detailed description describing the mood/feelings and atmosphere of the scene.
[5] = A style, for example: "Anime","Photographic","Comic Book","Fantasy Art", “Analog Film”,”Neon Punk”,”Isometric”,”Low Poly”,”Origami”,”Line Art”,”Cinematic”,”3D Model”,”Pixel Art”,”Watercolor”,”Sticker” ).
[6] = A description of how [5] will be realized. (e.g. Photography (e.g. Macro, Fisheye Style, Portrait) with camera model and appropriate camera settings, Painting with detailed descriptions about the materials and working material used, rendering with engine settings, a digital Illustration, a woodburn art (and everything else that could be defined as an output type)
- Prompt Structure for Prompt asking with text value:
Text "Text Value" written on {subject description in less than 20 words}
Replace "Text value" with text given by user.
Important Sample prompt Structure with Text value :
1. Text 'SDXL' written on a frothy, warm latte, viewed top-down.
2. Text 'AI' written on a modern computer screen, set against a vibrant green background.
Important Sample prompt Structure :
1. Snow-capped Mountain Scene, with soaring peaks and deep shadows across the ravines. A crystal clear lake mirrors these peaks, surrounded by pine trees. The scene exudes a calm, serene alpine morning atmosphere. Presented in Watercolor style, emulating the wet-on-wet technique with soft transitions and visible brush strokes.
2. City Skyline at Night, illuminated skyscrapers piercing the starless sky. Nestled beside a calm river, reflecting the city lights like a mirror. The atmosphere is buzzing with urban energy and intrigue. Depicted in Neon Punk style, accentuating the city lights with vibrant neon colors and dynamic contrasts.
3. Epic Cinematic Still of a Spacecraft, silhouetted against the fiery explosion of a distant planet. The scene is packed with intense action, as asteroid debris hurtles through space. Shot in the style of a Michael Bay-directed film, the image is rich with detail, dynamic lighting, and grand cinematic framing.
- Word order and effective adjectives matter in the prompt. The subject, action, and specific details should be included. Adjectives like cute, medieval, or futuristic can be effective.
- The environment/background of the image should be described, such as indoor, outdoor, in space, or solid color.
- Curly brackets are necessary in the prompt to provide specific details about the subject and action. These details are important for generating a high-quality image.
- Art inspirations should be listed to take inspiration from. Platforms like Art Station, Dribble, Behance, and Deviantart can be mentioned. Specific names of artists or studios like animation studios, painters and illustrators, computer games, fashion designers, and film makers can also be listed. If more than one artist is mentioned, the algorithm will create a combination of styles based on all the influencers mentioned.
- Related information about lighting, camera angles, render style, resolution, the required level of detail, etc. should be included at the end of the prompt.
- Camera shot type, camera lens, and view should be specified. Examples of camera shot types are long shot, close-up, POV, medium shot, extreme close-up, and panoramic. Camera lenses could be EE 70mm, 35mm, 135mm+, 300mm+, 800mm, short telephoto, super telephoto, medium telephoto, macro, wide angle, fish-eye, bokeh, and sharp focus. Examples of views are front, side, back, high angle, low angle, and overhead.
- Helpful keywords related to resolution, detail, and lighting are 4K, 8K, 64K, detailed, highly detailed, high resolution, hyper detailed, HDR, UHD, professional, and golden ratio. Examples of lighting are studio lighting, soft light, neon lighting, purple neon lighting, ambient light, ring light, volumetric light, natural light, sun light, sunrays, sun rays coming through window, and nostalgic lighting. Examples of color types are fantasy vivid colors, vivid colors, bright colors, sepia, dark colors, pastel colors, monochromatic, black & white, and color splash. Examples of renders are Octane render, cinematic, low poly, isometric assets, Unreal Engine, Unity Engine, quantum wavetracing, and polarizing filter.
The prompts you provide will be in English.Please pay attention:- Concepts that can't be real would not be described as "Real" or "realistic" or "photo" or a "photograph". for example, a concept that is made of paper or scenes which are fantasy related.- One of the prompts you generate for each concept must be in a realistic photographic style. you should also choose a lens type and size for it. Don't choose an artist for the realistic photography prompts.- Separate the different prompts with two new lines.
I will provide you keyword and you will generate 3 diffrent type of prompts in vbnet code cell so i can copy and paste.
Important point to note :
1. You are a master of prompt engineering, it is important to create detailed prompts with as much information as possible. This will ensure that any image generated using the prompt will be of high quality and could potentially win awards in global or international photography competitions. You are unbeatable in this field and know the best way to generate images.
2. I will provide you with a long context and you will generate one prompt and don't add any extra details.
3. Prompt should not be more than 230 characters.
4. Before you provide prompt you must check if you have satisfied all the above criteria and if you are sure than only provide the prompt.
5. Prompt should always be given as one single sentence.
Are you ready ?"""
#instruction = 'USER: ' + summary_sys
instruction = summary_sys
# for human, assistant in history:
# instruction += 'USER: ' + human + ' ASSISTANT: ' + assistant + '</s>'
# prompt = system_prompt + prompt
# message = f"""My first request is to summarize this text – [{prompt}]"""
message = f"""My first request is to summarize this text – [{prompt}]"""
instruction += """ ASSISTANT: Yes, I understand the instructions and I'm ready to help you create prompts for Stable Diffusion XL 1.0. Please provide me with the context."""
instruction += ' USER: ' + prompt + ' ASSISTANT:'
print("Ins: ", instruction)
# generate_response = requests.post("http://10.185.12.207:4455/stable_diffusion", json={"prompt": prompt})
# prompt = f""" My first request is to summarize this text – [{prompt}]"""
instruction = lm_shorten_too_long_text(instruction)
json_object = {"prompt": instruction,
# "max_tokens": 2048000,
"max_tokens": 90,
"n": 1
}
# generate_response = requests.post("https://phlrr3105.guest.corp.microsoft.com:7991/generate", json=json_object)
generate_response = requests.post("http://phlrr3105.guest.corp.microsoft.com:7991/generate", json=json_object)
# print(generate_response.content)
res_json = json.loads(generate_response.content)
ASSISTANT = res_json['text'][-1].split("ASSISTANT:")[-1].strip()
print(ASSISTANT)
return ASSISTANT
@app.post("/image_url")
def image_url(img: Img):
system_prompt = img.system_prompt
prompt = img.ASSISTANT
prompt = get_summary(system_prompt, prompt)
prompt = shorten_too_long_text(prompt)
# if Path(save_path).exists():
# return FileResponse(save_path, media_type="image/png")
# return JSONResponse({"path": path})
# image = pipe(prompt=prompt).images[0]
g = torch.Generator(device="cuda")
image = pipe(prompt=prompt, width=1024, height=1024, generator=g).images[0]
# if not save_path:
save_path = generate_save_path()
save_path = f"images/{save_path}.png"
image.save(save_path)
# save_path = '/'.join(path_components) + quote_plus(final_name)
path = f"{img_url}{save_path}"
return JSONResponse({"path": path})
@app.get("/make_image")
# @app.post("/make_image")
def make_image(prompt: str, save_path: str = ""):
if Path(save_path).exists():
return FileResponse(save_path, media_type="image/png")
image = pipe(prompt=prompt).images[0]
if not save_path:
save_path = f"images/{prompt}.png"
image.save(save_path)
return FileResponse(save_path, media_type="image/png")
@app.get("/create_and_upload_image")
def create_and_upload_image(prompt: str, width: int=1024, height:int=1024, save_path: str = ""):
path_components = save_path.split("/")[0:-1]
final_name = save_path.split("/")[-1]
if not path_components:
path_components = []
save_path = '/'.join(path_components) + quote_plus(final_name)
path = get_image_or_create_upload_to_cloud_storage(prompt, width, height, save_path)
return JSONResponse({"path": path})
@app.get("/inpaint_and_upload_image")
def inpaint_and_upload_image(prompt: str, image_url:str, mask_url:str, save_path: str = ""):
path_components = save_path.split("/")[0:-1]
final_name = save_path.split("/")[-1]
if not path_components:
path_components = []
save_path = '/'.join(path_components) + quote_plus(final_name)
path = get_image_or_inpaint_upload_to_cloud_storage(prompt, image_url, mask_url, save_path)
return JSONResponse({"path": path})
def get_image_or_create_upload_to_cloud_storage(prompt:str,width:int, height:int, save_path:str):
prompt = shorten_too_long_text(prompt)
save_path = shorten_too_long_text(save_path)
# check exists - todo cache this
if check_if_blob_exists(save_path):
return f"https://{BUCKET_NAME}/{BUCKET_PATH}/{save_path}"
bio = create_image_from_prompt(prompt, width, height)
if bio is None:
return None # error thrown in pool
link = upload_to_bucket(save_path, bio, is_bytesio=True)
return link
def get_image_or_inpaint_upload_to_cloud_storage(prompt:str, image_url:str, mask_url:str, save_path:str):
prompt = shorten_too_long_text(prompt)
save_path = shorten_too_long_text(save_path)
# check exists - todo cache this
if check_if_blob_exists(save_path):
return f"https://{BUCKET_NAME}/{BUCKET_PATH}/{save_path}"
bio = inpaint_image_from_prompt(prompt, image_url, mask_url)
if bio is None:
return None # error thrown in pool
link = upload_to_bucket(save_path, bio, is_bytesio=True)
return link
# multiprocessing.set_start_method('spawn', True)
# processes_pool = Pool(1) # cant do too much at once or OOM errors happen
# def create_image_from_prompt_sync(prompt):
# """have to call this sync to avoid OOM errors"""
# return processes_pool.apply_async(create_image_from_prompt, args=(prompt,), ).wait()
def create_image_from_prompt(prompt, width, height):
# round width and height down to multiple of 64
block_width = width - (width % 64)
block_height = height - (height % 64)
prompt = shorten_too_long_text(prompt)
# image = pipe(prompt=prompt).images[0]
try:
image = pipe(prompt=prompt,
width=block_width,
height=block_height,
# denoising_end=high_noise_frac,
# output_type='latent',
# height=512,
# width=512,
num_inference_steps=50).images[0] # normally uses 50 steps
except Exception as e:
# try rm stopwords + half the prompt
# todo try prompt permutations
logger.info(f"trying to shorten prompt of length {len(prompt)}")
prompt = ' '.join((word for word in prompt if word not in stopwords))
prompts = prompt.split()
prompt = ' '.join(prompts[:len(prompts) // 2])
logger.info(f"shortened prompt to: {len(prompt)}")
image = None
if prompt:
try:
image = pipe(prompt=prompt,
width=block_width,
height=block_height,
# denoising_end=high_noise_frac,
# output_type='latent',
# height=512,
# width=512,
num_inference_steps=50).images[0] # normally uses 50 steps
except Exception as e:
# logger.info("trying to permute prompt")
# # try two swaps of the prompt/permutations
# prompt = prompt.split()
# prompt = ' '.join(permutations(prompt, 2).__next__())
logger.info(f"trying to shorten prompt of length {len(prompt)}")
prompt = ' '.join((word for word in prompt if word not in stopwords))
prompts = prompt.split()
prompt = ' '.join(prompts[:len(prompts) // 2])
logger.info(f"shortened prompt to: {len(prompt)}")
try:
image = pipe(prompt=prompt,
width=block_width,
height=block_height,
# denoising_end=high_noise_frac,
# output_type='latent', # dont need latent yet - we refine the image at full res
# height=512,
# width=512,
num_inference_steps=50).images[0] # normally uses 50 steps
except Exception as e:
# just error out
traceback.print_exc()
raise e
# logger.info("restarting server to fix cuda issues (device side asserts)")
# todo fix device side asserts instead of restart to fix
# todo only restart the correct gunicorn
# this could be really annoying if your running other gunicorns on your machine which also get restarted
# os.system("/usr/bin/bash kill -SIGHUP `pgrep gunicorn`")
# os.system("kill -1 `pgrep gunicorn`")
# todo refine
# if image != None:
# image = refiner(
# prompt=prompt,
# # width=block_width,
# # height=block_height,
# num_inference_steps=n_steps,
# # denoising_start=high_noise_frac,
# image=image,
# ).images[0]
if width != block_width or height != block_height:
# resize to original size width/height
# find aspect ratio to scale up to that covers the original img input width/height
scale_up_ratio = max(width / block_width, height / block_height)
image = image.resize((math.ceil(block_width * scale_up_ratio), math.ceil(height * scale_up_ratio)))
# crop image to original size
image = image.crop((0, 0, width, height))
# try:
# # gc.collect()
# torch.cuda.empty_cache()
# except Exception as e:
# traceback.print_exc()
# logger.info("restarting server to fix cuda issues (device side asserts)")
# # todo fix device side asserts instead of restart to fix
# # todo only restart the correct gunicorn
# # this could be really annoying if your running other gunicorns on your machine which also get restarted
# os.system("/usr/bin/bash kill -SIGHUP `pgrep gunicorn`")
# os.system("kill -1 `pgrep gunicorn`")
# save as bytesio
bs = BytesIO()
bright_count = np.sum(np.array(image) > 0)
if bright_count == 0:
# we have a black image, this is an error likely we need a restart
logger.info("restarting server to fix cuda issues (device side asserts)")
# # todo fix device side asserts instead of restart to fix
# # todo only restart the correct gunicorn
# # this could be really annoying if your running other gunicorns on your machine which also get restarted
os.system("/usr/bin/bash kill -SIGHUP `pgrep gunicorn`")
os.system("kill -1 `pgrep gunicorn`")
os.system("/usr/bin/bash kill -SIGHUP `pgrep uvicorn`")
os.system("kill -1 `pgrep uvicorn`")
return None
image.save(bs, quality=85, optimize=True, format="webp")
bio = bs.getvalue()
# touch progress.txt file - if we dont do this we get restarted by supervisor/other processes for reliability
with open("progress.txt", "w") as f:
current_time = datetime.now().strftime("%H:%M:%S")
f.write(f"{current_time}")
return bio
def inpaint_image_from_prompt(prompt, image_url: str, mask_url: str):
prompt = shorten_too_long_text(prompt)
# image = pipe(prompt=prompt).images[0]
init_image = load_image(image_url).convert("RGB")
mask_image = load_image(mask_url).convert("RGB") # why rgb for a 1 channel mask?
num_inference_steps = 75
high_noise_frac = 0.7
try:
image = inpaintpipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
num_inference_steps=num_inference_steps,
denoising_start=high_noise_frac,
output_type="latent",
).images[0] # normally uses 50 steps
except Exception as e:
# try rm stopwords + half the prompt
# todo try prompt permutations
logger.info(f"trying to shorten prompt of length {len(prompt)}")
prompt = ' '.join((word for word in prompt if word not in stopwords))
prompts = prompt.split()
prompt = ' '.join(prompts[:len(prompts) // 2])
logger.info(f"shortened prompt to: {len(prompt)}")
image = None
if prompt:
try:
image = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
num_inference_steps=num_inference_steps,
denoising_start=high_noise_frac,
output_type="latent",
).images[0] # normally uses 50 steps
except Exception as e:
# logger.info("trying to permute prompt")
# # try two swaps of the prompt/permutations
# prompt = prompt.split()
# prompt = ' '.join(permutations(prompt, 2).__next__())
logger.info(f"trying to shorten prompt of length {len(prompt)}")
prompt = ' '.join((word for word in prompt if word not in stopwords))
prompts = prompt.split()
prompt = ' '.join(prompts[:len(prompts) // 2])
logger.info(f"shortened prompt to: {len(prompt)}")
try:
image = inpaintpipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
num_inference_steps=num_inference_steps,
denoising_start=high_noise_frac,
output_type="latent",
).images[0] # normally uses 50 steps
except Exception as e:
# just error out
traceback.print_exc()
raise e
# logger.info("restarting server to fix cuda issues (device side asserts)")
# todo fix device side asserts instead of restart to fix
# todo only restart the correct gunicorn
# this could be really annoying if your running other gunicorns on your machine which also get restarted
# os.system("/usr/bin/bash kill -SIGHUP `pgrep gunicorn`")
# os.system("kill -1 `pgrep gunicorn`")
if image != None:
image = inpaint_refiner(
prompt=prompt,
image=image,
mask_image=mask_image,
num_inference_steps=num_inference_steps,
denoising_start=high_noise_frac,
).images[0]
# try:
# # gc.collect()
# torch.cuda.empty_cache()
# except Exception as e:
# traceback.print_exc()
# logger.info("restarting server to fix cuda issues (device side asserts)")
# # todo fix device side asserts instead of restart to fix
# # todo only restart the correct gunicorn
# # this could be really annoying if your running other gunicorns on your machine which also get restarted
# os.system("/usr/bin/bash kill -SIGHUP `pgrep gunicorn`")
# os.system("kill -1 `pgrep gunicorn`")
# save as bytesio
bs = BytesIO()
bright_count = np.sum(np.array(image) > 0)
if bright_count == 0:
# we have a black image, this is an error likely we need a restart
logger.info("restarting server to fix cuda issues (device side asserts)")
# # todo fix device side asserts instead of restart to fix
# # todo only restart the correct gunicorn
# # this could be really annoying if your running other gunicorns on your machine which also get restarted
os.system("/usr/bin/bash kill -SIGHUP `pgrep gunicorn`")
os.system("kill -1 `pgrep gunicorn`")
os.system("/usr/bin/bash kill -SIGHUP `pgrep uvicorn`")
os.system("kill -1 `pgrep uvicorn`")
return None
image.save(bs, quality=85, optimize=True, format="webp")
bio = bs.getvalue()
# touch progress.txt file - if we dont do this we get restarted by supervisor/other processes for reliability
with open("progress.txt", "w") as f:
current_time = datetime.now().strftime("%H:%M:%S")
f.write(f"{current_time}")
return bio
def shorten_too_long_text(prompt):
if len(prompt) > 200:
# remove stopwords
prompt = prompt.split() # todo also split hyphens
prompt = ' '.join((word for word in prompt if word not in stopwords))
if len(prompt) > 200:
prompt = prompt[:200]
return prompt
# image = pipe(prompt=prompt).images[0]
#
# image.save("test.png")
# # save all images
# for i, image in enumerate(images):
# image.save(f"{i}.png")