File size: 6,987 Bytes
113dbd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
import os
from pathlib import Path
import csv
import json
import openai
import time
import pandas as pd

# Set up the OpenAI API client
api_key = "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"

openai.api_key = api_key

# Set up the chatGPT model and prompt
model_engine = "text-davinci-003"
import gradio as gr
import time
import argparse
from vllm import LLM, SamplingParams


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--model", type=str)  # model path
    parser.add_argument("--n_gpu", type=int, default=1)  # n_gpu
    return parser.parse_args()

def echo(message, history, system_prompt, temperature, max_tokens):
    response = f"System prompt: {system_prompt}\n Message: {message}. \n Temperature: {temperature}. \n Max Tokens: {max_tokens}."
    for i in range(min(len(response), int(max_tokens))):
        time.sleep(0.05)
        yield response[: i+1]



def align_data(data):
    """Given dict with lists, creates aligned strings



    Adapted from Assignment 3 of CS224N



    Args:

        data: (dict) data["x"] = ["I", "love", "you"]

              (dict) data["y"] = ["O", "O", "O"]



    Returns:

        data_aligned: (dict) data_align["x"] = "I love you"

                           data_align["y"] = "O O    O  "



    """
    spacings = [max([len(seq[i]) for seq in data.values()])
                for i in range(len(data[list(data.keys())[0]]))]
    data_aligned = dict()

    # for each entry, create aligned string
    for key, seq in data.items():
        str_aligned = ""
        for token, spacing in zip(seq, spacings):
            str_aligned += token + " " * (spacing - len(token) + 1)

        data_aligned[key] = str_aligned

    return data_aligned

# def get_llm_result(input_data, input_domain):
def get_llm_result(input_sys_prompt_str, input_history_str, prompt_str):
    # data is file path of topic result
    prompt = ""

    def predict(message, history, system_prompt, temperature, max_tokens):
        instruction = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. "
        for human, assistant in history:
            instruction += 'USER: '+ human + ' ASSISTANT: '+ assistant + '</s>'
        instruction += 'USER: '+ message + ' ASSISTANT:'
        problem = [instruction]
        stop_tokens = ["Question:", "Question", "USER:", "USER", "ASSISTANT:", "ASSISTANT", "Instruction:", "Instruction", "Response:", "Response"]
        sampling_params = SamplingParams(temperature=temperature, top_p=1, max_tokens=max_tokens, stop=stop_tokens)
        completions = llm.generate(problem, sampling_params)
        for output in completions:
            prompt = output.prompt
            generated_text = output.outputs[0].text
            return generated_text
            # for idx in range(len(generated_text)):
            #     yield generated_text[:idx+1]
    try:
        # completion = openai.Completion.create(
        #     engine=model_engine,
        #     prompt=prompt,
        #     max_tokens=3000,
        #     n=1,
        #     stop=None,
        #     temperature=0.5,
        # )
        #
        # response = completion.choices[0].text
        # shorten_response = response.replace("\n", "").strip()
        # len_response = len(shorten_response.split(" "))
        # if len_response >= 3500:
        #     shorten_response = "".join(shorten_response.split(" ")[:3500])
        #     print("X"*10)
        #     print(f"shorten_response is {shorten_response}")
        #     list_shorten = shorten_response.split(" ")
        #     print(list_shorten)
        #     print(f"length is {len(list_shorten)}")
        # title_prompt = f"{shorten_response},给这个文章写一个头条号风格的标题。增加标题的吸引力,可读性。"
        # title_completion = openai.Completion.create(
        #     engine=model_engine,
        #     prompt=title_prompt,
        #     max_tokens=200,
        #     n=1,
        #     stop=None,
        #     temperature=0.5,
        # )
        # title_response = title_completion.choices[0].text
        model_path = "/workspaceblobstore/caxu/trained_models/13Bv2_497kcontinueroleplay_dsys_2048_e4_2e_5/checkpoint-75"
        llm = LLM(model=model_path, tensor_parallel_size=1)
        history = input_history_str
        prompt = prompt_str
        system_prompt = input_sys_prompt_str

        response = predict(prompt, history, system_prompt, 0.5, 3000)

        print(response)
        # if not os.path.isdir(topic_file_path):
        #     print("File folder  not exist")
        # topic_result_file = ""
        # topic_file_name_pattern = "step10_json_filestep9_merge_rewrite_"
        # for filename in os.listdir(topic_file_path):
        #     if filename.startswith(topic_file_name_pattern):
        #         topic_result_file = os.path.join(topic_file_path, filename)
        #
        # data_aligned = dict()
        # output_dir_name = "."
        # output_dir = os.path.join(output_dir_name, "result_topic_file")
        # Path(output_dir).mkdir(parents=True, exist_ok=True)
        # write_file_name = "save_server_" + topic_file_path.split("\\")[-1]
        # write_output_file_path = os.path.join(output_dir, write_file_name)
        #
        # with open(topic_result_file, encoding="utf8") as f:
        #         json_data = json.load(f)
        #         return json_data
        return response, response

    except Exception as ex:
        print("File  not exist")
        raise ex

def get_model_api():
    """Returns lambda function for api"""

    # def model_api(input_title, input_domain):
    def model_api(input_sys_prompt_str, input_history_str, prompt_str):
        """

        Args:

            input_data: submitted to the API, raw string



        Returns:

            output_data: after some transformation, to be

                returned to the API



        """
        # print("X"*10)
        # print(f"input_title is {input_title}")
        # print(f"input_data2 is {input_domain}")
        punc = [",", "?", ".", ":", ";", "!", "(", ")", "[", "]"]
        # preds, title_preds = get_topic_result(input_title, input_domain)
        # preds, title_preds = get_llm_result(input_title, input_domain)
        preds, title_preds = get_llm_result(input_sys_prompt_str, input_history_str, prompt_str)
        output_data = {"system_prompt": input_sys_prompt_str, "history": input_history_str, "USER": prompt_str,  "ASSISTANT": preds}
        return output_data

    return model_api


#model_path = "/workspaceblobstore/caxu/trained_models/13Bv2_497kcontinueroleplay_dsys_2048_e4_2e_5/checkpoint-75"
#llm = LLM(model=model_path, tensor_parallel_size=1)
# config = Config()
# model  = NERModel(config)