File size: 23,194 Bytes
113dbd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
import gc
import math
import multiprocessing
import os
import traceback
from datetime import datetime
from io import BytesIO
from itertools import permutations
from multiprocessing.pool import Pool
from pathlib import Path
from urllib.parse import quote_plus
import numpy as np
import nltk
import torch
from PIL.Image import Image
from diffusers import DiffusionPipeline, StableDiffusionXLInpaintPipeline
from diffusers.utils import load_image
from fastapi import FastAPI
from fastapi.middleware.gzip import GZipMiddleware
from loguru import logger
from starlette.middleware.cors import CORSMiddleware
from starlette.responses import FileResponse
from starlette.responses import JSONResponse
from env import BUCKET_PATH, BUCKET_NAME
# from stable_diffusion_server.bucket_api import check_if_blob_exists, upload_to_bucket
torch._dynamo.config.suppress_errors = True
import string
import random
def generate_save_path():
# initializing size of string
N = 7
# using random.choices()
# generating random strings
res = ''.join(random.choices(string.ascii_uppercase +
string.digits, k=N))
return res
# pipe = DiffusionPipeline.from_pretrained(
# "models/stable-diffusion-xl-base-1.0",
# torch_dtype=torch.bfloat16,
# use_safetensors=True,
# variant="fp16",
# # safety_checker=None,
# ) # todo try torch_dtype=bfloat16
model_dir = os.getenv("SDXL_MODEL_DIR")
if model_dir:
# Use local model
model_key_base = os.path.join(model_dir, "stable-diffusion-xl-base-1.0")
model_key_refiner = os.path.join(model_dir, "stable-diffusion-xl-refiner-1.0")
else:
model_key_base = "stabilityai/stable-diffusion-xl-base-1.0"
model_key_refiner = "stabilityai/stable-diffusion-xl-refiner-1.0"
pipe = DiffusionPipeline.from_pretrained(model_key_base, torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
pipe.watermark = None
pipe.to("cuda")
refiner = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-refiner-1.0",
text_encoder_2=pipe.text_encoder_2,
vae=pipe.vae,
torch_dtype=torch.bfloat16, # safer to use bfloat?
use_safetensors=True,
variant="fp16", #remember not to download the big model
)
refiner.watermark = None
refiner.to("cuda")
# {'scheduler', 'text_encoder', 'text_encoder_2', 'tokenizer', 'tokenizer_2', 'unet', 'vae'} can be passed in from existing model
inpaintpipe = StableDiffusionXLInpaintPipeline.from_pretrained(
"models/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16, variant="fp16", use_safetensors=True,
scheduler=pipe.scheduler,
text_encoder=pipe.text_encoder,
text_encoder_2=pipe.text_encoder_2,
tokenizer=pipe.tokenizer,
tokenizer_2=pipe.tokenizer_2,
unet=pipe.unet,
vae=pipe.vae,
# load_connected_pipeline=
)
# # switch out to save gpu mem
# del inpaintpipe.vae
# del inpaintpipe.text_encoder_2
# del inpaintpipe.text_encoder
# del inpaintpipe.scheduler
# del inpaintpipe.tokenizer
# del inpaintpipe.tokenizer_2
# del inpaintpipe.unet
# inpaintpipe.vae = pipe.vae
# inpaintpipe.text_encoder_2 = pipe.text_encoder_2
# inpaintpipe.text_encoder = pipe.text_encoder
# inpaintpipe.scheduler = pipe.scheduler
# inpaintpipe.tokenizer = pipe.tokenizer
# inpaintpipe.tokenizer_2 = pipe.tokenizer_2
# inpaintpipe.unet = pipe.unet
# todo this should work
# inpaintpipe = StableDiffusionXLInpaintPipeline( # construct an inpainter using the existing model
# vae=pipe.vae,
# text_encoder_2=pipe.text_encoder_2,
# text_encoder=pipe.text_encoder,
# unet=pipe.unet,
# scheduler=pipe.scheduler,
# tokenizer=pipe.tokenizer,
# tokenizer_2=pipe.tokenizer_2,
# requires_aesthetics_score=False,
# )
inpaintpipe.to("cuda")
inpaintpipe.watermark = None
# inpaintpipe.register_to_config(requires_aesthetics_score=False)
inpaint_refiner = StableDiffusionXLInpaintPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-refiner-1.0",
text_encoder_2=inpaintpipe.text_encoder_2,
vae=inpaintpipe.vae,
torch_dtype=torch.bfloat16,
use_safetensors=True,
variant="fp16",
tokenizer_2=refiner.tokenizer_2,
tokenizer=refiner.tokenizer,
scheduler=refiner.scheduler,
text_encoder=refiner.text_encoder,
unet=refiner.unet,
)
# del inpaint_refiner.vae
# del inpaint_refiner.text_encoder_2
# del inpaint_refiner.text_encoder
# del inpaint_refiner.scheduler
# del inpaint_refiner.tokenizer
# del inpaint_refiner.tokenizer_2
# del inpaint_refiner.unet
# inpaint_refiner.vae = inpaintpipe.vae
# inpaint_refiner.text_encoder_2 = inpaintpipe.text_encoder_2
#
# inpaint_refiner.text_encoder = refiner.text_encoder
# inpaint_refiner.scheduler = refiner.scheduler
# inpaint_refiner.tokenizer = refiner.tokenizer
# inpaint_refiner.tokenizer_2 = refiner.tokenizer_2
# inpaint_refiner.unet = refiner.unet
# inpaint_refiner = StableDiffusionXLInpaintPipeline(
# text_encoder_2=inpaintpipe.text_encoder_2,
# vae=inpaintpipe.vae,
# # the rest from the existing refiner
# tokenizer_2=refiner.tokenizer_2,
# tokenizer=refiner.tokenizer,
# scheduler=refiner.scheduler,
# text_encoder=refiner.text_encoder,
# unet=refiner.unet,
# requires_aesthetics_score=False,
# )
inpaint_refiner.to("cuda")
inpaint_refiner.watermark = None
# inpaint_refiner.register_to_config(requires_aesthetics_score=False)
n_steps = 40
high_noise_frac = 0.8
# if using torch < 2.0
# pipe.enable_xformers_memory_efficient_attention()
# pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
# this can cause errors on some inputs so consider disabling it
pipe.unet = torch.compile(pipe.unet)
refiner.unet = torch.compile(refiner.unet)#, mode="reduce-overhead", fullgraph=True)
# compile the inpainters - todo reuse the other unets? swap out the models for others/del them so they share models and can be swapped efficiently
inpaintpipe.unet = pipe.unet
inpaint_refiner.unet = refiner.unet
# inpaintpipe.unet = torch.compile(inpaintpipe.unet)
# inpaint_refiner.unet = torch.compile(inpaint_refiner.unet)
from pydantic import BaseModel
app = FastAPI(
openapi_url="/static/openapi.json",
docs_url="/swagger-docs",
redoc_url="/redoc",
title="Generate Images Netwrck API",
description="Character Chat API",
# root_path="https://api.text-generator.io",
version="1",
)
app.add_middleware(GZipMiddleware, minimum_size=1000)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
stopwords = nltk.corpus.stopwords.words("english")
class Img(BaseModel):
system_prompt: str
ASSISTANT: str
# img_url = "http://phlrr2019.guest.corp.microsoft.com:8000/img1_sdv2.1.png"
img_url = "http://phlrr3105.guest.corp.microsoft.com:8000/"#/img1_sdv2.1.png"
is_gpu_busy = False
def get_summary(system_prompt, prompt):
import requests
import time
from io import BytesIO
import json
summary_sys = """I want you to act as a text summarizer to help me create a concise summary of the text I provide. The summary can be up to 60.0 words in length, expressing the key points, key scenarios, main character and concepts written in the original text without adding your interpretations."""
instruction = summary_sys
# for human, assistant in history:
# instruction += 'USER: ' + human + ' ASSISTANT: ' + assistant + '</s>'
# prompt = system_prompt + prompt
message = f"""My first request is to summarize this text – [{prompt}]"""
instruction += ' USER: ' + message + ' ASSISTANT:'
print("Ins: ", instruction)
# generate_response = requests.post("http://10.185.12.207:4455/stable_diffusion", json={"prompt": prompt})
# prompt = f""" My first request is to summarize this text – [{prompt}]"""
json_object = {"prompt": instruction,
# "max_tokens": 2048000,
"max_tokens": 90,
"n": 1
}
generate_response = requests.post("http://phlrr3105.guest.corp.microsoft.com:7991/generate", json=json_object)
# print(generate_response.content)
res_json = json.loads(generate_response.content)
ASSISTANT = res_json['text'][-1].split("ASSISTANT:")[-1].strip()
print(ASSISTANT)
return ASSISTANT
@app.post("/image_url")
def image_url(img: Img):
system_prompt = img.system_prompt
prompt = img.ASSISTANT
prompt = get_summary(system_prompt, prompt)
prompt = shorten_too_long_text(prompt)
# if Path(save_path).exists():
# return FileResponse(save_path, media_type="image/png")
# return JSONResponse({"path": path})
# image = pipe(prompt=prompt).images[0]
g = torch.Generator(device="cuda")
image = pipe(prompt=prompt, width=1024, height=1024, generator=g).images[0]
# if not save_path:
save_path = generate_save_path()
save_path = f"images/{save_path}.png"
image.save(save_path)
# save_path = '/'.join(path_components) + quote_plus(final_name)
path = f"{img_url}/{save_path}"
return JSONResponse({"path": path})
@app.get("/make_image")
# @app.post("/make_image")
def make_image(prompt: str, save_path: str = ""):
if Path(save_path).exists():
return FileResponse(save_path, media_type="image/png")
image = pipe(prompt=prompt).images[0]
if not save_path:
save_path = f"images/{prompt}.png"
image.save(save_path)
return FileResponse(save_path, media_type="image/png")
@app.get("/create_and_upload_image")
def create_and_upload_image(prompt: str, width: int=1024, height:int=1024, save_path: str = ""):
path_components = save_path.split("/")[0:-1]
final_name = save_path.split("/")[-1]
if not path_components:
path_components = []
save_path = '/'.join(path_components) + quote_plus(final_name)
path = get_image_or_create_upload_to_cloud_storage(prompt, width, height, save_path)
return JSONResponse({"path": path})
@app.get("/inpaint_and_upload_image")
def inpaint_and_upload_image(prompt: str, image_url:str, mask_url:str, save_path: str = ""):
path_components = save_path.split("/")[0:-1]
final_name = save_path.split("/")[-1]
if not path_components:
path_components = []
save_path = '/'.join(path_components) + quote_plus(final_name)
path = get_image_or_inpaint_upload_to_cloud_storage(prompt, image_url, mask_url, save_path)
return JSONResponse({"path": path})
def get_image_or_create_upload_to_cloud_storage(prompt:str,width:int, height:int, save_path:str):
prompt = shorten_too_long_text(prompt)
save_path = shorten_too_long_text(save_path)
# check exists - todo cache this
if check_if_blob_exists(save_path):
return f"https://{BUCKET_NAME}/{BUCKET_PATH}/{save_path}"
bio = create_image_from_prompt(prompt, width, height)
if bio is None:
return None # error thrown in pool
link = upload_to_bucket(save_path, bio, is_bytesio=True)
return link
def get_image_or_inpaint_upload_to_cloud_storage(prompt:str, image_url:str, mask_url:str, save_path:str):
prompt = shorten_too_long_text(prompt)
save_path = shorten_too_long_text(save_path)
# check exists - todo cache this
if check_if_blob_exists(save_path):
return f"https://{BUCKET_NAME}/{BUCKET_PATH}/{save_path}"
bio = inpaint_image_from_prompt(prompt, image_url, mask_url)
if bio is None:
return None # error thrown in pool
link = upload_to_bucket(save_path, bio, is_bytesio=True)
return link
# multiprocessing.set_start_method('spawn', True)
# processes_pool = Pool(1) # cant do too much at once or OOM errors happen
# def create_image_from_prompt_sync(prompt):
# """have to call this sync to avoid OOM errors"""
# return processes_pool.apply_async(create_image_from_prompt, args=(prompt,), ).wait()
def create_image_from_prompt(prompt, width, height):
# round width and height down to multiple of 64
block_width = width - (width % 64)
block_height = height - (height % 64)
prompt = shorten_too_long_text(prompt)
# image = pipe(prompt=prompt).images[0]
try:
image = pipe(prompt=prompt,
width=block_width,
height=block_height,
# denoising_end=high_noise_frac,
# output_type='latent',
# height=512,
# width=512,
num_inference_steps=50).images[0] # normally uses 50 steps
except Exception as e:
# try rm stopwords + half the prompt
# todo try prompt permutations
logger.info(f"trying to shorten prompt of length {len(prompt)}")
prompt = ' '.join((word for word in prompt if word not in stopwords))
prompts = prompt.split()
prompt = ' '.join(prompts[:len(prompts) // 2])
logger.info(f"shortened prompt to: {len(prompt)}")
image = None
if prompt:
try:
image = pipe(prompt=prompt,
width=block_width,
height=block_height,
# denoising_end=high_noise_frac,
# output_type='latent',
# height=512,
# width=512,
num_inference_steps=50).images[0] # normally uses 50 steps
except Exception as e:
# logger.info("trying to permute prompt")
# # try two swaps of the prompt/permutations
# prompt = prompt.split()
# prompt = ' '.join(permutations(prompt, 2).__next__())
logger.info(f"trying to shorten prompt of length {len(prompt)}")
prompt = ' '.join((word for word in prompt if word not in stopwords))
prompts = prompt.split()
prompt = ' '.join(prompts[:len(prompts) // 2])
logger.info(f"shortened prompt to: {len(prompt)}")
try:
image = pipe(prompt=prompt,
width=block_width,
height=block_height,
# denoising_end=high_noise_frac,
# output_type='latent', # dont need latent yet - we refine the image at full res
# height=512,
# width=512,
num_inference_steps=50).images[0] # normally uses 50 steps
except Exception as e:
# just error out
traceback.print_exc()
raise e
# logger.info("restarting server to fix cuda issues (device side asserts)")
# todo fix device side asserts instead of restart to fix
# todo only restart the correct gunicorn
# this could be really annoying if your running other gunicorns on your machine which also get restarted
# os.system("/usr/bin/bash kill -SIGHUP `pgrep gunicorn`")
# os.system("kill -1 `pgrep gunicorn`")
# todo refine
# if image != None:
# image = refiner(
# prompt=prompt,
# # width=block_width,
# # height=block_height,
# num_inference_steps=n_steps,
# # denoising_start=high_noise_frac,
# image=image,
# ).images[0]
if width != block_width or height != block_height:
# resize to original size width/height
# find aspect ratio to scale up to that covers the original img input width/height
scale_up_ratio = max(width / block_width, height / block_height)
image = image.resize((math.ceil(block_width * scale_up_ratio), math.ceil(height * scale_up_ratio)))
# crop image to original size
image = image.crop((0, 0, width, height))
# try:
# # gc.collect()
# torch.cuda.empty_cache()
# except Exception as e:
# traceback.print_exc()
# logger.info("restarting server to fix cuda issues (device side asserts)")
# # todo fix device side asserts instead of restart to fix
# # todo only restart the correct gunicorn
# # this could be really annoying if your running other gunicorns on your machine which also get restarted
# os.system("/usr/bin/bash kill -SIGHUP `pgrep gunicorn`")
# os.system("kill -1 `pgrep gunicorn`")
# save as bytesio
bs = BytesIO()
bright_count = np.sum(np.array(image) > 0)
if bright_count == 0:
# we have a black image, this is an error likely we need a restart
logger.info("restarting server to fix cuda issues (device side asserts)")
# # todo fix device side asserts instead of restart to fix
# # todo only restart the correct gunicorn
# # this could be really annoying if your running other gunicorns on your machine which also get restarted
os.system("/usr/bin/bash kill -SIGHUP `pgrep gunicorn`")
os.system("kill -1 `pgrep gunicorn`")
os.system("/usr/bin/bash kill -SIGHUP `pgrep uvicorn`")
os.system("kill -1 `pgrep uvicorn`")
return None
image.save(bs, quality=85, optimize=True, format="webp")
bio = bs.getvalue()
# touch progress.txt file - if we dont do this we get restarted by supervisor/other processes for reliability
with open("progress.txt", "w") as f:
current_time = datetime.now().strftime("%H:%M:%S")
f.write(f"{current_time}")
return bio
def inpaint_image_from_prompt(prompt, image_url: str, mask_url: str):
prompt = shorten_too_long_text(prompt)
# image = pipe(prompt=prompt).images[0]
init_image = load_image(image_url).convert("RGB")
mask_image = load_image(mask_url).convert("RGB") # why rgb for a 1 channel mask?
num_inference_steps = 75
high_noise_frac = 0.7
try:
image = inpaintpipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
num_inference_steps=num_inference_steps,
denoising_start=high_noise_frac,
output_type="latent",
).images[0] # normally uses 50 steps
except Exception as e:
# try rm stopwords + half the prompt
# todo try prompt permutations
logger.info(f"trying to shorten prompt of length {len(prompt)}")
prompt = ' '.join((word for word in prompt if word not in stopwords))
prompts = prompt.split()
prompt = ' '.join(prompts[:len(prompts) // 2])
logger.info(f"shortened prompt to: {len(prompt)}")
image = None
if prompt:
try:
image = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
num_inference_steps=num_inference_steps,
denoising_start=high_noise_frac,
output_type="latent",
).images[0] # normally uses 50 steps
except Exception as e:
# logger.info("trying to permute prompt")
# # try two swaps of the prompt/permutations
# prompt = prompt.split()
# prompt = ' '.join(permutations(prompt, 2).__next__())
logger.info(f"trying to shorten prompt of length {len(prompt)}")
prompt = ' '.join((word for word in prompt if word not in stopwords))
prompts = prompt.split()
prompt = ' '.join(prompts[:len(prompts) // 2])
logger.info(f"shortened prompt to: {len(prompt)}")
try:
image = inpaintpipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
num_inference_steps=num_inference_steps,
denoising_start=high_noise_frac,
output_type="latent",
).images[0] # normally uses 50 steps
except Exception as e:
# just error out
traceback.print_exc()
raise e
# logger.info("restarting server to fix cuda issues (device side asserts)")
# todo fix device side asserts instead of restart to fix
# todo only restart the correct gunicorn
# this could be really annoying if your running other gunicorns on your machine which also get restarted
# os.system("/usr/bin/bash kill -SIGHUP `pgrep gunicorn`")
# os.system("kill -1 `pgrep gunicorn`")
if image != None:
image = inpaint_refiner(
prompt=prompt,
image=image,
mask_image=mask_image,
num_inference_steps=num_inference_steps,
denoising_start=high_noise_frac,
).images[0]
# try:
# # gc.collect()
# torch.cuda.empty_cache()
# except Exception as e:
# traceback.print_exc()
# logger.info("restarting server to fix cuda issues (device side asserts)")
# # todo fix device side asserts instead of restart to fix
# # todo only restart the correct gunicorn
# # this could be really annoying if your running other gunicorns on your machine which also get restarted
# os.system("/usr/bin/bash kill -SIGHUP `pgrep gunicorn`")
# os.system("kill -1 `pgrep gunicorn`")
# save as bytesio
bs = BytesIO()
bright_count = np.sum(np.array(image) > 0)
if bright_count == 0:
# we have a black image, this is an error likely we need a restart
logger.info("restarting server to fix cuda issues (device side asserts)")
# # todo fix device side asserts instead of restart to fix
# # todo only restart the correct gunicorn
# # this could be really annoying if your running other gunicorns on your machine which also get restarted
os.system("/usr/bin/bash kill -SIGHUP `pgrep gunicorn`")
os.system("kill -1 `pgrep gunicorn`")
os.system("/usr/bin/bash kill -SIGHUP `pgrep uvicorn`")
os.system("kill -1 `pgrep uvicorn`")
return None
image.save(bs, quality=85, optimize=True, format="webp")
bio = bs.getvalue()
# touch progress.txt file - if we dont do this we get restarted by supervisor/other processes for reliability
with open("progress.txt", "w") as f:
current_time = datetime.now().strftime("%H:%M:%S")
f.write(f"{current_time}")
return bio
def shorten_too_long_text(prompt):
if len(prompt) > 200:
# remove stopwords
prompt = prompt.split() # todo also split hyphens
prompt = ' '.join((word for word in prompt if word not in stopwords))
if len(prompt) > 200:
prompt = prompt[:200]
return prompt
# image = pipe(prompt=prompt).images[0]
#
# image.save("test.png")
# # save all images
# for i, image in enumerate(images):
# image.save(f"{i}.png")
|