trained new 128k tokenizer
Browse files- merges.txt +0 -0
- scripts/TRAIN.md +54 -0
- scripts/model.yaml +141 -0
- scripts/prepare_pretrain_dataset.py +172 -0
- scripts/requirements.in +12 -0
- scripts/train_tokenizer.py +267 -0
- special_tokens_map.json +6 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1036 -0
- vocab.json +0 -0
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
scripts/TRAIN.md
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Train
|
2 |
+
|
3 |
+
## Environment
|
4 |
+
|
5 |
+
```bash
|
6 |
+
cd scripts
|
7 |
+
python -m venv venv
|
8 |
+
source venv/bin/activate
|
9 |
+
pip install -U -r requirements.in
|
10 |
+
```
|
11 |
+
|
12 |
+
## Tokenizer
|
13 |
+
|
14 |
+
```bash
|
15 |
+
python -B train_tokenizer.py
|
16 |
+
```
|
17 |
+
|
18 |
+
## Dataset
|
19 |
+
|
20 |
+
```bash
|
21 |
+
python -B prepare_pretrain_dataset.py
|
22 |
+
```
|
23 |
+
|
24 |
+
## Model
|
25 |
+
|
26 |
+
### Pretrain
|
27 |
+
|
28 |
+
```bash
|
29 |
+
litgpt pretrain --config ./model.yaml
|
30 |
+
```
|
31 |
+
|
32 |
+
```bash
|
33 |
+
litgpt convert_from_litgpt out/pretrain/final/ out/converted_model
|
34 |
+
cp config.json out/pretrain/final/
|
35 |
+
cp config.json out/converted_model/
|
36 |
+
```
|
37 |
+
|
38 |
+
```python
|
39 |
+
import torch
|
40 |
+
from safetensors.torch import save_file
|
41 |
+
|
42 |
+
state_dict = torch.load('out/converted_model/model.pth', map_location='cpu')
|
43 |
+
save_file(state_dict, 'out/converted_model/model.safetensors')
|
44 |
+
```
|
45 |
+
|
46 |
+
## Evaluate
|
47 |
+
|
48 |
+
```bash
|
49 |
+
litgpt evaluate --tasks 'leaderboard' --out_dir 'evaluate-0/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
|
50 |
+
|
51 |
+
litgpt evaluate --tasks 'hellaswag,gsm8k,truthfulqa_mc2,mmlu,winogrande,arc_challenge' --out_dir 'evaluate-1/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
|
52 |
+
|
53 |
+
litgpt evaluate --tasks 'mmlu_pro,ifeval,mgsm_direct,mathqa,gpqa' --out_dir 'evaluate-2/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
|
54 |
+
```
|
scripts/model.yaml
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# The name of the model to pretrain. Choose from names in ``litgpt.config``. Mutually exclusive with
|
2 |
+
# ``model_config``. (type: Optional[str], default: null)
|
3 |
+
model_name: "tiny-llama-1.1b"
|
4 |
+
|
5 |
+
# A ``litgpt.Config`` object to define the model architecture. Mutually exclusive with
|
6 |
+
# ``model_config``. (type: Optional[Config], default: null)
|
7 |
+
model_config:
|
8 |
+
padded_vocab_size: 32768
|
9 |
+
vocab_size: 32768
|
10 |
+
block_size: 131072
|
11 |
+
n_layer: 10
|
12 |
+
n_head: 32
|
13 |
+
head_size: null
|
14 |
+
n_embd: 320
|
15 |
+
n_query_groups: 8
|
16 |
+
rotary_percentage: 1.0
|
17 |
+
parallel_residual: false
|
18 |
+
bias: false
|
19 |
+
norm_class_name: "RMSNorm"
|
20 |
+
norm_eps: 1e-05
|
21 |
+
mlp_class_name: "LLaMAMLP"
|
22 |
+
intermediate_size: 1120
|
23 |
+
rope_base: 1000000
|
24 |
+
|
25 |
+
# Directory in which to save checkpoints and logs. If running in a Lightning Studio Job, look for it in
|
26 |
+
# /teamspace/jobs/<job-name>/share. (type: <class 'Path'>, default: out/pretrain)
|
27 |
+
out_dir: "../out/pretrain/"
|
28 |
+
|
29 |
+
# The precision to use for pretraining. Possible choices: "bf16-true", "bf16-mixed", "32-true". (type: Optional[str], default: null)
|
30 |
+
# precision: bf16-mixed
|
31 |
+
precision: bf16-true
|
32 |
+
|
33 |
+
# Optional path to a checkpoint directory to initialize the model from.
|
34 |
+
# Useful for continued pretraining. Mutually exclusive with ``resume``. (type: Optional[Path], default: null)
|
35 |
+
initial_checkpoint_dir:
|
36 |
+
|
37 |
+
# Path to a checkpoint directory to resume from in case training was interrupted, or ``True`` to resume
|
38 |
+
# from the latest checkpoint in ``out_dir``. An error will be raised if no checkpoint is found. Passing
|
39 |
+
# ``'auto'`` will resume from the latest checkpoint but not error if no checkpoint exists.
|
40 |
+
# (type: Union[bool, Literal["auto"], Path], default: False)
|
41 |
+
# resume: false
|
42 |
+
resume: "auto"
|
43 |
+
|
44 |
+
# Data-related arguments. If not provided, the default is ``litgpt.data.TinyLlama``.
|
45 |
+
data:
|
46 |
+
class_path: LitData
|
47 |
+
|
48 |
+
init_args:
|
49 |
+
data_path: "../data/"
|
50 |
+
num_workers: 16
|
51 |
+
|
52 |
+
# Training-related arguments. See ``litgpt.args.TrainArgs`` for details
|
53 |
+
train:
|
54 |
+
# Number of optimizer steps between saving checkpoints (type: Optional[int], default: 1000)
|
55 |
+
save_interval: 1000
|
56 |
+
|
57 |
+
# Number of iterations between logging calls (type: int, default: 1)
|
58 |
+
log_interval: 1
|
59 |
+
|
60 |
+
# Number of samples between optimizer steps across data-parallel ranks (type: int, default: 512)
|
61 |
+
global_batch_size: 512
|
62 |
+
|
63 |
+
# Number of samples per data-parallel rank (type: int, default: 4)
|
64 |
+
micro_batch_size: 4
|
65 |
+
|
66 |
+
# Number of iterations with learning rate warmup active (type: int, default: 2000)
|
67 |
+
lr_warmup_steps: 2000
|
68 |
+
|
69 |
+
# Number of epochs to train on (type: Optional[int], default: null)
|
70 |
+
epochs:
|
71 |
+
|
72 |
+
# Total number of tokens to train on (type: Optional[int], default: 3000000000000)
|
73 |
+
# max_tokens: 3000000000000
|
74 |
+
max_tokens: 8628998688 # 351072 * 8193 * 3
|
75 |
+
|
76 |
+
# Limits the number of optimizer steps to run. (type: Optional[int], default: null)
|
77 |
+
max_steps:
|
78 |
+
|
79 |
+
# Limits the length of samples. Off by default (type: Optional[int], default: null)
|
80 |
+
max_seq_length: 8192
|
81 |
+
|
82 |
+
# Whether to tie the embedding weights with the language modeling head weights. (type: Optional[bool], default: False)
|
83 |
+
tie_embeddings:
|
84 |
+
|
85 |
+
# (type: Optional[float], default: 1.0)
|
86 |
+
max_norm: 1.0
|
87 |
+
|
88 |
+
# (type: float, default: 4e-05)
|
89 |
+
min_lr: 4e-05
|
90 |
+
|
91 |
+
# Evaluation-related arguments. See ``litgpt.args.EvalArgs`` for details
|
92 |
+
eval:
|
93 |
+
# Number of optimizer steps between evaluation calls (type: int, default: 1000)
|
94 |
+
interval: 50
|
95 |
+
|
96 |
+
# Number of tokens to generate (type: Optional[int], default: null)
|
97 |
+
max_new_tokens:
|
98 |
+
|
99 |
+
# Number of iterations (type: int, default: 100)
|
100 |
+
max_iters: 100
|
101 |
+
|
102 |
+
# Whether to evaluate on the validation set at the beginning of the training
|
103 |
+
initial_validation: false
|
104 |
+
|
105 |
+
# Whether to evaluate on the validation set at the end the training
|
106 |
+
final_validation: true
|
107 |
+
|
108 |
+
# Optimizer-related arguments
|
109 |
+
optimizer:
|
110 |
+
# class_path: torch.optim.AdamW
|
111 |
+
class_path: grokadamw.GrokAdamW
|
112 |
+
# class_path: bitsandbytes.optim.AdamW8bit
|
113 |
+
# class_path: bitsandbytes.optim.PagedAdamW8bit
|
114 |
+
|
115 |
+
init_args:
|
116 |
+
# (type: float, default: 0.001)
|
117 |
+
lr: 1e-3
|
118 |
+
|
119 |
+
# (type: float, default: 0.01)
|
120 |
+
weight_decay: 0.01
|
121 |
+
|
122 |
+
# (type: tuple, default: (0.9,0.999))
|
123 |
+
betas:
|
124 |
+
- 0.9
|
125 |
+
- 0.95
|
126 |
+
|
127 |
+
# How many devices/GPUs to use. Uses all GPUs by default. (type: Union[int, str], default: auto)
|
128 |
+
devices: auto
|
129 |
+
|
130 |
+
# How many nodes to use. (type: int, default: 1)
|
131 |
+
num_nodes: 1
|
132 |
+
|
133 |
+
# Optional path to the tokenizer dir that was used for preprocessing the dataset. Only some data
|
134 |
+
# module require this. (type: Optional[Path], default: null)
|
135 |
+
tokenizer_dir: "../"
|
136 |
+
|
137 |
+
# The name of the logger to send metrics to. (type: Literal['wandb', 'tensorboard', 'csv'], default: tensorboard)
|
138 |
+
logger_name: "wandb"
|
139 |
+
|
140 |
+
# The random seed to use for reproducibility. (type: int, default: 42)
|
141 |
+
seed: 42
|
scripts/prepare_pretrain_dataset.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
|
3 |
+
from datasets import load_dataset
|
4 |
+
from litdata import optimize, TokensLoader
|
5 |
+
from litgpt.tokenizer import Tokenizer
|
6 |
+
from functools import partial
|
7 |
+
|
8 |
+
|
9 |
+
def batch_iterator(name=None):
|
10 |
+
# text
|
11 |
+
if name in (None, 'xu-song/cc100-samples'):
|
12 |
+
dataset = (
|
13 |
+
load_dataset(name, lang, split='train')
|
14 |
+
for lang in ['am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'bn_rom', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'en', 'eo', 'es', 'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gn', 'gu', 'ha', 'he', 'hi', 'hi_rom', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'my_zaw', 'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt', 'qu', 'rm', 'ro', 'ru', 'sa', 'si', 'sc', 'sd', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'ta_rom', 'te', 'te_rom', 'th', 'tl', 'tn', 'tr', 'ug', 'uk', 'ur', 'ur_rom', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh-Hans', 'zh-Hant', 'zu']
|
15 |
+
)
|
16 |
+
|
17 |
+
for d in dataset:
|
18 |
+
for row in d['text']:
|
19 |
+
yield row
|
20 |
+
|
21 |
+
del dataset
|
22 |
+
gc.collect()
|
23 |
+
|
24 |
+
# code
|
25 |
+
if name in (None, 'bigcode/the-stack-smol-xs'):
|
26 |
+
dataset = (
|
27 |
+
load_dataset(name, lang, split='train', trust_remote_code=True)
|
28 |
+
for lang in [
|
29 |
+
'ada', 'agda', 'alloy', 'antlr', 'applescript', 'assembly', 'augeas', 'awk', 'batchfile', 'bison', 'bluespec', 'c',
|
30 |
+
'c++', 'c-sharp', 'clojure', 'cmake', 'coffeescript', 'common-lisp', 'css', 'cuda', 'dart', 'dockerfile', 'elixir',
|
31 |
+
'elm', 'emacs-lisp','erlang', 'f-sharp', 'fortran', 'glsl', 'go', 'groovy', 'haskell','html', 'idris', 'isabelle', 'java',
|
32 |
+
'java-server-pages', 'javascript', 'julia', 'kotlin', 'lean', 'literate-agda', 'literate-coffeescript', 'literate-haskell',
|
33 |
+
'lua', 'makefile', 'maple', 'markdown', 'mathematica', 'matlab', 'ocaml', 'pascal', 'perl', 'php', 'powershell', 'prolog',
|
34 |
+
'protocol-buffer', 'python', 'r', 'racket', 'restructuredtext', 'rmarkdown', 'ruby', 'rust', 'sas', 'scala', 'scheme',
|
35 |
+
'shell', 'smalltalk', 'solidity', 'sparql', 'sql', 'stan', 'standard-ml', 'stata', 'systemverilog', 'tcl', 'tcsh', 'tex',
|
36 |
+
'thrift', 'typescript', 'verilog', 'vhdl', 'visual-basic', 'xslt', 'yacc', 'zig'
|
37 |
+
]
|
38 |
+
)
|
39 |
+
|
40 |
+
for d in dataset:
|
41 |
+
for row in d:
|
42 |
+
yield row['content']
|
43 |
+
|
44 |
+
del dataset
|
45 |
+
gc.collect()
|
46 |
+
|
47 |
+
# text
|
48 |
+
if name in (None, 'nampdn-ai/tiny-textbooks'):
|
49 |
+
dataset = load_dataset(name, split='train')
|
50 |
+
|
51 |
+
for row in dataset:
|
52 |
+
yield row['textbook']
|
53 |
+
|
54 |
+
del dataset
|
55 |
+
gc.collect()
|
56 |
+
|
57 |
+
# code
|
58 |
+
if name in (None, 'm-a-p/CodeFeedback-Filtered-Instruction'):
|
59 |
+
dataset = load_dataset(name, split='train')
|
60 |
+
|
61 |
+
for row in dataset:
|
62 |
+
yield row['query'] + '\n' + row['answer']
|
63 |
+
|
64 |
+
del dataset
|
65 |
+
gc.collect()
|
66 |
+
|
67 |
+
# code
|
68 |
+
if name in (None, 'nampdn-ai/tiny-codes'):
|
69 |
+
dataset = load_dataset(name, split='train')
|
70 |
+
|
71 |
+
for row in dataset:
|
72 |
+
yield row['prompt'] + '\n' + row['response']
|
73 |
+
|
74 |
+
del dataset
|
75 |
+
gc.collect()
|
76 |
+
|
77 |
+
# math
|
78 |
+
if name in (None, 'ajibawa-2023/Maths-College'):
|
79 |
+
dataset = load_dataset(name, split='train')
|
80 |
+
|
81 |
+
for row in dataset:
|
82 |
+
yield row['instruction'] + '\n' + row['output']
|
83 |
+
|
84 |
+
del dataset
|
85 |
+
gc.collect()
|
86 |
+
|
87 |
+
# math
|
88 |
+
if name in (None, 'microsoft/orca-math-word-problems-200k'):
|
89 |
+
dataset = load_dataset(name, split='train')
|
90 |
+
|
91 |
+
for row in dataset:
|
92 |
+
yield row['question'] + '\n' + row['answer']
|
93 |
+
|
94 |
+
del dataset
|
95 |
+
gc.collect()
|
96 |
+
|
97 |
+
# math serbian
|
98 |
+
if name in (None, 'datatab/orca_math_world_problem_200k_serbian'):
|
99 |
+
dataset = load_dataset(name, split='train')
|
100 |
+
|
101 |
+
for row in dataset:
|
102 |
+
yield row['question_translated_srb'] + '\n' + row['answer_translated_srb']
|
103 |
+
|
104 |
+
del dataset
|
105 |
+
gc.collect()
|
106 |
+
|
107 |
+
# emoji
|
108 |
+
if name in (None, 'badrex/llm-emoji-dataset'):
|
109 |
+
dataset = load_dataset(name, split='train')
|
110 |
+
|
111 |
+
for row in dataset:
|
112 |
+
yield f'{row["character"]}\n{row["unicode"]}\n{row["short description"]}\n{row["tags"]}\n{row["LLM description"]}'
|
113 |
+
|
114 |
+
del dataset
|
115 |
+
gc.collect()
|
116 |
+
|
117 |
+
# instructions
|
118 |
+
alpaca_datasets_names = [
|
119 |
+
'saillab/alpaca-english-cleaned',
|
120 |
+
'saillab/alpaca-serbian-cleaned',
|
121 |
+
'saillab/alpaca-croatian-cleaned',
|
122 |
+
'saillab/alpaca-bosnian-cleaned',
|
123 |
+
'saillab/alpaca-macedonian-cleaned',
|
124 |
+
'saillab/alpaca-slovenian-cleaned',
|
125 |
+
]
|
126 |
+
|
127 |
+
if name in (None, *alpaca_datasets_names):
|
128 |
+
for split in ['train', 'test']:
|
129 |
+
dataset = load_dataset(name, split=split)
|
130 |
+
|
131 |
+
for row in dataset:
|
132 |
+
if row['input'] in (None, '', 'nan'):
|
133 |
+
yield row['instruction'] + '\n' + row['output']
|
134 |
+
else:
|
135 |
+
yield row['instruction'] + '\n' + row['input'] + '\n' + row['output']
|
136 |
+
|
137 |
+
del dataset
|
138 |
+
gc.collect()
|
139 |
+
|
140 |
+
|
141 |
+
def tokenize_fn(dataset_name, tokenizer=None):
|
142 |
+
for text in batch_iterator(dataset_name):
|
143 |
+
text_ids = tokenizer.encode(text, bos=False, eos=True)
|
144 |
+
yield text_ids
|
145 |
+
|
146 |
+
|
147 |
+
datasets_names = [
|
148 |
+
'xu-song/cc100-samples',
|
149 |
+
'bigcode/the-stack-smol-xs',
|
150 |
+
'nampdn-ai/tiny-textbooks',
|
151 |
+
'm-a-p/CodeFeedback-Filtered-Instruction',
|
152 |
+
'nampdn-ai/tiny-codes',
|
153 |
+
'ajibawa-2023/Maths-College',
|
154 |
+
'microsoft/orca-math-word-problems-200k',
|
155 |
+
'datatab/orca_math_world_problem_200k_serbian',
|
156 |
+
'badrex/llm-emoji-dataset',
|
157 |
+
'saillab/alpaca-english-cleaned',
|
158 |
+
'saillab/alpaca-serbian-cleaned',
|
159 |
+
'saillab/alpaca-croatian-cleaned',
|
160 |
+
'saillab/alpaca-bosnian-cleaned',
|
161 |
+
'saillab/alpaca-macedonian-cleaned',
|
162 |
+
'saillab/alpaca-slovenian-cleaned',
|
163 |
+
]
|
164 |
+
|
165 |
+
outputs = optimize(
|
166 |
+
fn=partial(tokenize_fn, tokenizer=Tokenizer('..')),
|
167 |
+
inputs=datasets_names,
|
168 |
+
output_dir='../data/',
|
169 |
+
# Number of tokens to store by chunks. This is roughly 64MB of tokens per chunk.
|
170 |
+
chunk_size=(8193 * 2003),
|
171 |
+
num_workers=16,
|
172 |
+
)
|
scripts/requirements.in
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
|
2 |
+
|
3 |
+
tqdm
|
4 |
+
datasets
|
5 |
+
jinja2
|
6 |
+
transformers
|
7 |
+
wandb
|
8 |
+
# litgpt[all]
|
9 |
+
litgpt[all] @ git+https://github.com/Lightning-AI/litgpt.git
|
10 |
+
litdata
|
11 |
+
grokadamw
|
12 |
+
# bitsandbytes
|
scripts/train_tokenizer.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
import sys
|
3 |
+
|
4 |
+
from datasets import load_dataset
|
5 |
+
from transformers import PreTrainedTokenizerFast
|
6 |
+
from tokenizers import Tokenizer, normalizers, pre_tokenizers, processors, decoders
|
7 |
+
from tokenizers.models import BPE
|
8 |
+
from tokenizers.trainers import BpeTrainer
|
9 |
+
from tokenizers.processors import TemplateProcessing
|
10 |
+
|
11 |
+
|
12 |
+
x = input('Are you sure? [y/N] ')
|
13 |
+
|
14 |
+
if x not in ('y', 'Y', 'yes'):
|
15 |
+
sys.exit(0)
|
16 |
+
|
17 |
+
|
18 |
+
def batch_iterator():
|
19 |
+
# text
|
20 |
+
dataset = (
|
21 |
+
load_dataset('saillab/taco-datasets', data_dir=data_dir, split='train')
|
22 |
+
for data_dir in [
|
23 |
+
'multilingual-instruction-tuning-dataset /multilingual-alpaca-52k-gpt-4',
|
24 |
+
'multilingual-instruction-tuning-dataset /multilinugal-dolly-15k',
|
25 |
+
]
|
26 |
+
)
|
27 |
+
|
28 |
+
for d in dataset:
|
29 |
+
for row in d:
|
30 |
+
for n in row:
|
31 |
+
yield row['instruction'] + '\n' + row['input'] + '\n' + row['output']
|
32 |
+
|
33 |
+
del dataset
|
34 |
+
gc.collect()
|
35 |
+
|
36 |
+
# text
|
37 |
+
dataset = (
|
38 |
+
load_dataset('xu-song/cc100-samples', lang, split='train')
|
39 |
+
for lang in [
|
40 |
+
'am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'bn_rom', 'br',
|
41 |
+
'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'en', 'eo', 'es',
|
42 |
+
'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl',
|
43 |
+
'gn', 'gu', 'ha', 'he', 'hi', 'hi_rom', 'hr', 'ht', 'hu',
|
44 |
+
'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km',
|
45 |
+
'kn', 'ko', 'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt',
|
46 |
+
'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'my_zaw',
|
47 |
+
'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt',
|
48 |
+
'qu', 'rm', 'ro', 'ru', 'sa', 'si', 'sc', 'sd', 'sk', 'sl',
|
49 |
+
'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'ta_rom',
|
50 |
+
'te', 'te_rom', 'th', 'tl', 'tn', 'tr', 'ug', 'uk', 'ur',
|
51 |
+
'ur_rom', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo',
|
52 |
+
'zh-Hans', 'zh-Hant', 'zu',
|
53 |
+
]
|
54 |
+
)
|
55 |
+
|
56 |
+
for d in dataset:
|
57 |
+
for row in d['text']:
|
58 |
+
yield row
|
59 |
+
|
60 |
+
del dataset
|
61 |
+
gc.collect()
|
62 |
+
|
63 |
+
# code
|
64 |
+
dataset = load_dataset('bigcode/programming-languages-keywords', split='train')
|
65 |
+
|
66 |
+
for row in dataset:
|
67 |
+
for n in row['keywords']:
|
68 |
+
yield n
|
69 |
+
|
70 |
+
del dataset
|
71 |
+
gc.collect()
|
72 |
+
|
73 |
+
# code
|
74 |
+
dataset = (
|
75 |
+
load_dataset('bigcode/the-stack-smol-xs', lang, split='train', trust_remote_code=True)
|
76 |
+
for lang in [
|
77 |
+
'ada', 'agda', 'alloy', 'antlr', 'applescript', 'assembly',
|
78 |
+
'augeas', 'awk', 'batchfile', 'bison', 'bluespec', 'c',
|
79 |
+
'c++', 'c-sharp', 'clojure', 'cmake', 'coffeescript', 'common-lisp',
|
80 |
+
'css', 'cuda', 'dart', 'dockerfile', 'elixir',
|
81 |
+
'elm', 'emacs-lisp','erlang', 'f-sharp', 'fortran', 'glsl', 'go',
|
82 |
+
'groovy', 'haskell','html', 'idris', 'isabelle', 'java',
|
83 |
+
'java-server-pages', 'javascript', 'julia', 'kotlin', 'lean',
|
84 |
+
'literate-agda', 'literate-coffeescript', 'literate-haskell',
|
85 |
+
'lua', 'makefile', 'maple', 'markdown', 'mathematica', 'matlab',
|
86 |
+
'ocaml', 'pascal', 'perl', 'php', 'powershell', 'prolog',
|
87 |
+
'protocol-buffer', 'python', 'r', 'racket', 'restructuredtext',
|
88 |
+
'rmarkdown', 'ruby', 'rust', 'sas', 'scala', 'scheme',
|
89 |
+
'shell', 'smalltalk', 'solidity', 'sparql', 'sql', 'stan',
|
90 |
+
'standard-ml', 'stata', 'systemverilog', 'tcl', 'tcsh', 'tex',
|
91 |
+
'thrift', 'typescript', 'verilog', 'vhdl', 'visual-basic', 'xslt',
|
92 |
+
'yacc', 'zig',
|
93 |
+
]
|
94 |
+
)
|
95 |
+
|
96 |
+
for d in dataset:
|
97 |
+
for row in d:
|
98 |
+
yield row['content']
|
99 |
+
|
100 |
+
del dataset
|
101 |
+
gc.collect()
|
102 |
+
|
103 |
+
# text + code
|
104 |
+
dataset = load_dataset('m-a-p/CodeFeedback-Filtered-Instruction', split='train')
|
105 |
+
|
106 |
+
for row in dataset:
|
107 |
+
yield row['query'] + '\n' + row['answer']
|
108 |
+
|
109 |
+
del dataset
|
110 |
+
gc.collect()
|
111 |
+
|
112 |
+
# math
|
113 |
+
dataset = load_dataset('microsoft/orca-math-word-problems-200k', split='train')
|
114 |
+
|
115 |
+
for row in dataset:
|
116 |
+
yield row['question'] + '\n' + row['answer']
|
117 |
+
|
118 |
+
del dataset
|
119 |
+
gc.collect()
|
120 |
+
|
121 |
+
# math
|
122 |
+
dataset = load_dataset('ajibawa-2023/Maths-College', split='train')
|
123 |
+
|
124 |
+
for row in dataset:
|
125 |
+
yield row['instruction'] + '\n' + row['output']
|
126 |
+
|
127 |
+
del dataset
|
128 |
+
gc.collect()
|
129 |
+
|
130 |
+
# emoji
|
131 |
+
dataset = load_dataset('badrex/llm-emoji-dataset', split='train')
|
132 |
+
|
133 |
+
for row in dataset:
|
134 |
+
yield f'{row["character"]}\n{row["unicode"]}\n{row["short description"]}\n{row["tags"]}\n{row["LLM description"]}'
|
135 |
+
|
136 |
+
del dataset
|
137 |
+
gc.collect()
|
138 |
+
|
139 |
+
|
140 |
+
bpe = BPE(unk_token=None, fuse_unk=False, byte_fallback=False, ignore_merges=True)
|
141 |
+
tokenizer = Tokenizer(bpe)
|
142 |
+
|
143 |
+
special_tokens = [
|
144 |
+
'<unk>',
|
145 |
+
'<s>',
|
146 |
+
'</s>',
|
147 |
+
'<|im_start|>',
|
148 |
+
'<|im_end|>',
|
149 |
+
'system',
|
150 |
+
'user',
|
151 |
+
'assistant',
|
152 |
+
'tool',
|
153 |
+
|
154 |
+
'<tools>',
|
155 |
+
'</tools>',
|
156 |
+
'<tool_call>',
|
157 |
+
'</tool_call>',
|
158 |
+
'<tool_response>',
|
159 |
+
'</tool_response>',
|
160 |
+
|
161 |
+
'"arguments"',
|
162 |
+
'"name"',
|
163 |
+
|
164 |
+
'<arguments>',
|
165 |
+
'</arguments>',
|
166 |
+
'<argument>',
|
167 |
+
'</argument>',
|
168 |
+
'<argument-name>',
|
169 |
+
'</argument-name>',
|
170 |
+
'<argument-type>',
|
171 |
+
'</argument-type>',
|
172 |
+
'<argument-value>',
|
173 |
+
'</argument-value>',
|
174 |
+
'<parameter>',
|
175 |
+
'</parameter>',
|
176 |
+
'<parameter-name>',
|
177 |
+
'</parameter-name>',
|
178 |
+
'<parameter-type>',
|
179 |
+
'</parameter-type>',
|
180 |
+
'<parameter-value>',
|
181 |
+
'</parameter-value>',
|
182 |
+
'<field>',
|
183 |
+
'</field>',
|
184 |
+
'<field-name>',
|
185 |
+
'</field-name>',
|
186 |
+
'<field-type>',
|
187 |
+
'</field-type>',
|
188 |
+
'<field-value>',
|
189 |
+
'</field-value>',
|
190 |
+
'<name>',
|
191 |
+
'</name>',
|
192 |
+
'<type>',
|
193 |
+
'</type>',
|
194 |
+
'<value>',
|
195 |
+
'</value>',
|
196 |
+
'<function>',
|
197 |
+
'</function>',
|
198 |
+
'<function-name>',
|
199 |
+
'</function-name>',
|
200 |
+
'<function-type>',
|
201 |
+
'</function-type>',
|
202 |
+
'<function-value>',
|
203 |
+
'</function-value>',
|
204 |
+
]
|
205 |
+
|
206 |
+
for i in range(2, 25):
|
207 |
+
special_tokens.append(' ' * i)
|
208 |
+
|
209 |
+
for i in range(128 - len(special_tokens)):
|
210 |
+
special_tokens.append(f'<|reserved_{i}|>')
|
211 |
+
|
212 |
+
# emoji
|
213 |
+
dataset = load_dataset('badrex/llm-emoji-dataset', split='train')
|
214 |
+
emoji_chars = [row['character'] for row in dataset if len(row['character']) == 1]
|
215 |
+
del dataset
|
216 |
+
|
217 |
+
# programming languages
|
218 |
+
dataset = load_dataset('Tanvir1337/programming-languages', split='train')
|
219 |
+
programming_languages = [n for row in dataset for n in row['text']]
|
220 |
+
del dataset
|
221 |
+
|
222 |
+
# programming languages keywords
|
223 |
+
dataset = load_dataset('bigcode/programming-languages-keywords', split='train')
|
224 |
+
code_keywords = [n for row in dataset for n in row['keywords']]
|
225 |
+
del dataset
|
226 |
+
|
227 |
+
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=False, trim_offsets=True, use_regex=True)
|
228 |
+
|
229 |
+
tokenizer.post_processor = TemplateProcessing(
|
230 |
+
single='$A:0', # $A represents the token, :0 specifies the type ID for single sequences
|
231 |
+
pair='$A:0 $B:1', # For pairs, we specify type IDs for both tokens
|
232 |
+
special_tokens=[],
|
233 |
+
)
|
234 |
+
|
235 |
+
tokenizer.decoder = decoders.ByteLevel(add_prefix_space=False, trim_offsets=True, use_regex=True)
|
236 |
+
|
237 |
+
trainer = BpeTrainer(
|
238 |
+
vocab_size=131072, # 2 ** 17, 128k
|
239 |
+
min_frequency=2,
|
240 |
+
special_tokens=special_tokens,
|
241 |
+
initial_alphabet=emoji_chars + programming_languages + code_keywords,
|
242 |
+
)
|
243 |
+
|
244 |
+
tokenizer.train_from_iterator(batch_iterator(), trainer)
|
245 |
+
tokenizer.save('../tokenizer.json')
|
246 |
+
tokenizer.model.save('../')
|
247 |
+
|
248 |
+
CHATML_CHAT_TEMPLATE = (
|
249 |
+
"{% for message in messages %}"
|
250 |
+
"{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}"
|
251 |
+
"{% endfor %}"
|
252 |
+
"{% if add_generation_prompt %}"
|
253 |
+
"{{ '<|im_start|>assistant\n' }}"
|
254 |
+
"{% endif %}"
|
255 |
+
)
|
256 |
+
|
257 |
+
fast_tokenizer = PreTrainedTokenizerFast(
|
258 |
+
tokenizer_object=tokenizer,
|
259 |
+
chat_template=CHATML_CHAT_TEMPLATE,
|
260 |
+
bos_token='<s>',
|
261 |
+
eos_token='</s>',
|
262 |
+
unk_token='<unk>',
|
263 |
+
pad_token='</s>',
|
264 |
+
clean_up_tokenization_spaces=False,
|
265 |
+
)
|
266 |
+
|
267 |
+
fast_tokenizer.save_pretrained('../')
|
special_tokens_map.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"eos_token": "</s>",
|
4 |
+
"pad_token": "</s>",
|
5 |
+
"unk_token": "<unk>"
|
6 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,1036 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<unk>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<|im_start|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "<|im_end|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"5": {
|
44 |
+
"content": "system",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"6": {
|
52 |
+
"content": "user",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"7": {
|
60 |
+
"content": "assistant",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"8": {
|
68 |
+
"content": "tool",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"9": {
|
76 |
+
"content": "<tools>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"10": {
|
84 |
+
"content": "</tools>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"11": {
|
92 |
+
"content": "<tool_call>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"12": {
|
100 |
+
"content": "</tool_call>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"13": {
|
108 |
+
"content": "<tool_response>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"14": {
|
116 |
+
"content": "</tool_response>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"15": {
|
124 |
+
"content": "\"arguments\"",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"16": {
|
132 |
+
"content": "\"name\"",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"17": {
|
140 |
+
"content": "<arguments>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"18": {
|
148 |
+
"content": "</arguments>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"19": {
|
156 |
+
"content": "<argument>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"20": {
|
164 |
+
"content": "</argument>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"21": {
|
172 |
+
"content": "<argument-name>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"22": {
|
180 |
+
"content": "</argument-name>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"23": {
|
188 |
+
"content": "<argument-type>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"24": {
|
196 |
+
"content": "</argument-type>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"25": {
|
204 |
+
"content": "<argument-value>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"26": {
|
212 |
+
"content": "</argument-value>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"27": {
|
220 |
+
"content": "<parameter>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"28": {
|
228 |
+
"content": "</parameter>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"29": {
|
236 |
+
"content": "<parameter-name>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"30": {
|
244 |
+
"content": "</parameter-name>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"31": {
|
252 |
+
"content": "<parameter-type>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"32": {
|
260 |
+
"content": "</parameter-type>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"33": {
|
268 |
+
"content": "<parameter-value>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"34": {
|
276 |
+
"content": "</parameter-value>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"35": {
|
284 |
+
"content": "<field>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"36": {
|
292 |
+
"content": "</field>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"37": {
|
300 |
+
"content": "<field-name>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"38": {
|
308 |
+
"content": "</field-name>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"39": {
|
316 |
+
"content": "<field-type>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"40": {
|
324 |
+
"content": "</field-type>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"41": {
|
332 |
+
"content": "<field-value>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"42": {
|
340 |
+
"content": "</field-value>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"43": {
|
348 |
+
"content": "<name>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"44": {
|
356 |
+
"content": "</name>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"45": {
|
364 |
+
"content": "<type>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"46": {
|
372 |
+
"content": "</type>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"47": {
|
380 |
+
"content": "<value>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"48": {
|
388 |
+
"content": "</value>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"49": {
|
396 |
+
"content": "<function>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"50": {
|
404 |
+
"content": "</function>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"51": {
|
412 |
+
"content": "<function-name>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"52": {
|
420 |
+
"content": "</function-name>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"53": {
|
428 |
+
"content": "<function-type>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"54": {
|
436 |
+
"content": "</function-type>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"55": {
|
444 |
+
"content": "<function-value>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"56": {
|
452 |
+
"content": "</function-value>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"57": {
|
460 |
+
"content": " ",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"58": {
|
468 |
+
"content": " ",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"59": {
|
476 |
+
"content": " ",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"60": {
|
484 |
+
"content": " ",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"61": {
|
492 |
+
"content": " ",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"62": {
|
500 |
+
"content": " ",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"63": {
|
508 |
+
"content": " ",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"64": {
|
516 |
+
"content": " ",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"65": {
|
524 |
+
"content": " ",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"66": {
|
532 |
+
"content": " ",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"67": {
|
540 |
+
"content": " ",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"68": {
|
548 |
+
"content": " ",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"69": {
|
556 |
+
"content": " ",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"70": {
|
564 |
+
"content": " ",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"71": {
|
572 |
+
"content": " ",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"72": {
|
580 |
+
"content": " ",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"73": {
|
588 |
+
"content": " ",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"74": {
|
596 |
+
"content": " ",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"75": {
|
604 |
+
"content": " ",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"76": {
|
612 |
+
"content": " ",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"77": {
|
620 |
+
"content": " ",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"78": {
|
628 |
+
"content": " ",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"79": {
|
636 |
+
"content": " ",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"80": {
|
644 |
+
"content": "<|reserved_0|>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"81": {
|
652 |
+
"content": "<|reserved_1|>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"82": {
|
660 |
+
"content": "<|reserved_2|>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"83": {
|
668 |
+
"content": "<|reserved_3|>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"84": {
|
676 |
+
"content": "<|reserved_4|>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"85": {
|
684 |
+
"content": "<|reserved_5|>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"86": {
|
692 |
+
"content": "<|reserved_6|>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"87": {
|
700 |
+
"content": "<|reserved_7|>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"88": {
|
708 |
+
"content": "<|reserved_8|>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"89": {
|
716 |
+
"content": "<|reserved_9|>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"90": {
|
724 |
+
"content": "<|reserved_10|>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"91": {
|
732 |
+
"content": "<|reserved_11|>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"92": {
|
740 |
+
"content": "<|reserved_12|>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"93": {
|
748 |
+
"content": "<|reserved_13|>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"94": {
|
756 |
+
"content": "<|reserved_14|>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"95": {
|
764 |
+
"content": "<|reserved_15|>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"96": {
|
772 |
+
"content": "<|reserved_16|>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"97": {
|
780 |
+
"content": "<|reserved_17|>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"98": {
|
788 |
+
"content": "<|reserved_18|>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"99": {
|
796 |
+
"content": "<|reserved_19|>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"100": {
|
804 |
+
"content": "<|reserved_20|>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"101": {
|
812 |
+
"content": "<|reserved_21|>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"102": {
|
820 |
+
"content": "<|reserved_22|>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"103": {
|
828 |
+
"content": "<|reserved_23|>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"104": {
|
836 |
+
"content": "<|reserved_24|>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
},
|
843 |
+
"105": {
|
844 |
+
"content": "<|reserved_25|>",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": true
|
850 |
+
},
|
851 |
+
"106": {
|
852 |
+
"content": "<|reserved_26|>",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": false,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": true
|
858 |
+
},
|
859 |
+
"107": {
|
860 |
+
"content": "<|reserved_27|>",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": false,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": true
|
866 |
+
},
|
867 |
+
"108": {
|
868 |
+
"content": "<|reserved_28|>",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": false,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": true
|
874 |
+
},
|
875 |
+
"109": {
|
876 |
+
"content": "<|reserved_29|>",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": false,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": true
|
882 |
+
},
|
883 |
+
"110": {
|
884 |
+
"content": "<|reserved_30|>",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": false,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": true
|
890 |
+
},
|
891 |
+
"111": {
|
892 |
+
"content": "<|reserved_31|>",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": false,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": true
|
898 |
+
},
|
899 |
+
"112": {
|
900 |
+
"content": "<|reserved_32|>",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": false,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": true
|
906 |
+
},
|
907 |
+
"113": {
|
908 |
+
"content": "<|reserved_33|>",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": false,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": true
|
914 |
+
},
|
915 |
+
"114": {
|
916 |
+
"content": "<|reserved_34|>",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": false,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": true
|
922 |
+
},
|
923 |
+
"115": {
|
924 |
+
"content": "<|reserved_35|>",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": false,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": true
|
930 |
+
},
|
931 |
+
"116": {
|
932 |
+
"content": "<|reserved_36|>",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": false,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": true
|
938 |
+
},
|
939 |
+
"117": {
|
940 |
+
"content": "<|reserved_37|>",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": false,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": true
|
946 |
+
},
|
947 |
+
"118": {
|
948 |
+
"content": "<|reserved_38|>",
|
949 |
+
"lstrip": false,
|
950 |
+
"normalized": false,
|
951 |
+
"rstrip": false,
|
952 |
+
"single_word": false,
|
953 |
+
"special": true
|
954 |
+
},
|
955 |
+
"119": {
|
956 |
+
"content": "<|reserved_39|>",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false,
|
961 |
+
"special": true
|
962 |
+
},
|
963 |
+
"120": {
|
964 |
+
"content": "<|reserved_40|>",
|
965 |
+
"lstrip": false,
|
966 |
+
"normalized": false,
|
967 |
+
"rstrip": false,
|
968 |
+
"single_word": false,
|
969 |
+
"special": true
|
970 |
+
},
|
971 |
+
"121": {
|
972 |
+
"content": "<|reserved_41|>",
|
973 |
+
"lstrip": false,
|
974 |
+
"normalized": false,
|
975 |
+
"rstrip": false,
|
976 |
+
"single_word": false,
|
977 |
+
"special": true
|
978 |
+
},
|
979 |
+
"122": {
|
980 |
+
"content": "<|reserved_42|>",
|
981 |
+
"lstrip": false,
|
982 |
+
"normalized": false,
|
983 |
+
"rstrip": false,
|
984 |
+
"single_word": false,
|
985 |
+
"special": true
|
986 |
+
},
|
987 |
+
"123": {
|
988 |
+
"content": "<|reserved_43|>",
|
989 |
+
"lstrip": false,
|
990 |
+
"normalized": false,
|
991 |
+
"rstrip": false,
|
992 |
+
"single_word": false,
|
993 |
+
"special": true
|
994 |
+
},
|
995 |
+
"124": {
|
996 |
+
"content": "<|reserved_44|>",
|
997 |
+
"lstrip": false,
|
998 |
+
"normalized": false,
|
999 |
+
"rstrip": false,
|
1000 |
+
"single_word": false,
|
1001 |
+
"special": true
|
1002 |
+
},
|
1003 |
+
"125": {
|
1004 |
+
"content": "<|reserved_45|>",
|
1005 |
+
"lstrip": false,
|
1006 |
+
"normalized": false,
|
1007 |
+
"rstrip": false,
|
1008 |
+
"single_word": false,
|
1009 |
+
"special": true
|
1010 |
+
},
|
1011 |
+
"126": {
|
1012 |
+
"content": "<|reserved_46|>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false,
|
1017 |
+
"special": true
|
1018 |
+
},
|
1019 |
+
"127": {
|
1020 |
+
"content": "<|reserved_47|>",
|
1021 |
+
"lstrip": false,
|
1022 |
+
"normalized": false,
|
1023 |
+
"rstrip": false,
|
1024 |
+
"single_word": false,
|
1025 |
+
"special": true
|
1026 |
+
}
|
1027 |
+
},
|
1028 |
+
"bos_token": "<s>",
|
1029 |
+
"chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
1030 |
+
"clean_up_tokenization_spaces": false,
|
1031 |
+
"eos_token": "</s>",
|
1032 |
+
"model_max_length": 1000000000000000019884624838656,
|
1033 |
+
"pad_token": "</s>",
|
1034 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
1035 |
+
"unk_token": "<unk>"
|
1036 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|